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Abstract

XIA, BING, Ph.D., December 2014, Physics

π0-h± Jet Correlations in d + Au Collisions at
√
sNN = 200 GeV (232 pp.)

Director of Dissertation: Justin Frantz

Various quark gluon plasma signatures have been experimentally established in

Au+Au and Pb+Pb collisions at RHIC and LHC, such as elliptical flow and jet

quenching. For decades, the quark gluon plasma was believed not to be created in

p+A collisions. However, recent experimental discoveries of collective flow in p+Pb

and d+Au collisions indicate a hot nuclear medium and a thermal equilibrium in

such small systems. An energy loss analysis would be a good alternative

measurement for such pictures.

Di-hadron correlation measurements are widely used in jet analysis. In this

study, π0-h± azimuthal correlations and the per trigger yields in d+Au collisions at

√
sNN = 200 GeV are measured and compared with p+p collisions at the same

energy. In order to cancel out part of the systematic uncertainties and measure the

subtle jet modifications, a new quantity RI is proposed and measured from data. In

central d+Au collisions, RI shows a clear suppression in large zT regions and a

delicate enhancement of about 2σ in low zT regions. Such jet modifications are

qualitatively similar, but in a much smaller scale, to the ones observed in central

Au+Au collisions, which are attributed to the jet quenching and energy loss in a

quark gluon plasma created in central Au+Au collisions.

No theory is available to explain this new experimental phenomenon. To

constrain the cold nuclear matter effects, we perform a series of simulations to

investigate the possible physics origin of these modifications. Various kT setting in

Pythia and Hijing simulations are not able to reproduce the features observed in

data. Also, the gluon jet mixing and nuclear modification of the parton distribution
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functions are studied. None of them are sufficient to explain the RI modification

observed in central d+Au collisions.

No significant away-side IdA modifications is observed in peripheral d+Au

collisions. This result suggests that previous unexpected RdA enhancement in

peripheral d+Au collisions from π0 and jet reconstruction analysis might come from

an issue with the determination of Ncoll scale factor instead of a real enhancement in

physics data.

Regardless of the theoretical origin, the data provide constraints that should be

able to set concrete limits on the contributions of various cold nuclear or possibly

hot QGP-like effects.
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1 Introduction

1.1 Quantum Chromodynamics

1.1.1 Microscopic Picture of World. The Standard Model (SM) is a

collection of theories, which incorporate special relativity (Lorentz invariance) and

gauge theory (gauge invariance), describing the electromagnetic, weak and strong

interactions in particle physics. Though gravity is not included in the Standard

Model, the gravitational interaction is insignificant at the subatomic scale, even

compared with the weak interaction. The Standard Model is the most successful

model to describe the underlying principles of fundamental particles. One major

goal of science is to understand matter. What is the matter (nature)? Where does

it come from (origin)? Besides the little known dark matter and dark energy,1 the

building blocks of the matter are the elementary particles . According to the

Standard Model, the known elementary particles can be categorized as the quarks ,

leptons (including neutrinos), gauge bosons and the Higgs boson(s), see Figure 1.1.

The graviton is postulated as a massless, spin-2 boson, which mediates the

gravitational force. However, the quantum field theory that includes the gravity is

not renormalizable, and the graviton has never been experimentally observed. The

unification of all the four interactions remains to a theory beyond the current

Standard Model, maybe even beyond the quantum field theory.

There are three generations of quarks, leptons and neutrinos. In principle,

there could be a fourth generation of neutrinos, for example, the sterile neutrinoes,

1 The existence of dark matter is indicated by extra gravitational effects, besides the known
baryon matter, in astronomical observations, such as the gravitational lens, the motion of galaxies.
The nature of the dark matter might be a weakly interacting massive particle (WIMP), or some
other non-baryon particles. Dark energy is a pure hypothetical descriptive concept to “explain”, or
say to name, the observed accelerating expansion of the universe, which is more than the current
estimation based on the known gravitational matter including the dark matter.

2 http://en.wikipedia.org/wiki/Standard Model

http://en.wikipedia.org/wiki/Standard_Model
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Figure 1.1: A table of the elementary particles in the Standard Model2

which do not interact with known particles via the electroweak interaction (or

strong interaction, of course). It is one candidate for dark matter. Until today, this

type of neutrinos remains hypothetical.

The gauge bosons are the force carriers in the Standard Model. The photon is

the intermediate gauge boson of the electromagnetic interaction, and W ± and Z0

are the ones for the weak interaction. The gluons are the strong interaction’s force

carriers. The Higgs boson(s) is predicted by the Higgs mechanism[1][2][3] in 1964,

and during the time of the research of this thesis, CMS (Compact Muon Solenoid,

an experiment collaboration at LHC) and ATLAS (A Toroidal LHC Apparatus, an
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experiment collaboration at LHC) have published the first papers [4][5] about the

discovery of a neutral boson with mass around 125 GeV, which is compatible with

the Standard Model Higgs boson(s), and thus completes the discovery of all

particles in the Standard Model.

In the Standard Model, the particle view of the world is embodied by quantum

field theory (QFT). The quantum field theory is a theory to describe particles as

excited states, through second quantization, of fields defined on the space-time

point. The Standard Model is a SU(3)⊗SU(2)L⊗U(1)Y gauge theory, and the gauge

theories are proven to be renormalizable by ’t Hooft and Veltman in the early

seventies [6](massless) [7](massive) [8](complete proof).

The field theory quantum chromodynamics (QCD), as part of the Standard

Model, is a quantum field theory describing the strong interaction between the

particles that are color charged. QCD is a SU(3) gauge theory, which means that

the color SU(3) local gauge symmetry generates the dynamics for the strong

interaction. The SU(3) symmetry in QCD is a non-Abelian symmetry, different

than the U(1) symmetry in quantum electrodynamic (QED), though the

Lagrangians are similar. Therefore, there are some extra rich features only in QCD,

which are not present in QED. We will discuss them in Section 1.1.3 and 1.1.4. In

the Standard Model, all the fundamental interactions are generated by some local

gauge symmetry. The strong interaction is described by SU(3)C color gauge

symmetry. The electroweak interaction is described by a SU(2)L⊗U(1)Y gauge

theory. The gauge boson fields are generated as W 1
µ , W

2
µ , W

3
µ and Bµ. After a local

gauge symmetry breaking (refered as the spontaneous symmetry breaking), the

boson fields mix to W ± ≡ (W 1 ∓ iW 2)/
√
2 and Z ≡ −B sin θW +W 3 cos θW , and the

W ±, Z, the Higgs fields acquire masses (the Higgs mechanism). The fermion fields
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can interact with the Higgs fields via the Yukawa coupling, which gives mass to the

leptons and quarks.

This is our current understanding of the particle world in a theoretical way

called the Standard Model. There are quite a lot parameters needed from the

experiments, and there are things it can’t explain. Nevertheless, this is a triumph in

physics history.

1.1.2 History of QCD. Initially, the strong interaction is termed as the

force that binds nucleons together inside of nuclei. Yukawa proposed that such a

strong nuclear force is carried by an intermediate boson [9]. The Yukawa theory of

the interaction between fermions (ψ) and bosons (φ) can be expressed by the

Lagrangian density

L = LDirac + LKlein-Gorden + gψ̄ψφ. (1.1)

Then the potential can be calculate as [10]

V (r) = − g2
4π

1

r
e−mφr (1.2)

with range about 1/mφ = h̵/mφc. From the experimental measurement of the size of

the nucleons, Yukawa predicted the mass of the exchanged boson to be around 100

MeV, which turns out to be the pion. However, this effective interpretation has a

serious flaw, which treats the nucleons as elementary particles. A more fundamental

strong interaction theory had yet to be established, waiting for the arrival of the

quark model, color hypothesis and Yang-Mills gauge theory.

The first step of the quark model started with the isospin (isotopic spin or

isobaric spin) proposed by Heisenberg [11] based on the almost identical mass of the

proton and neutron. The isospin is an abstract space spanned by the proton and

neutron, which is essentially the SU(2) flavor symmetry of up and down quarks (or

say, isospin rotation invariance in the strong interaction from Noether’s theorem).
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This symmetry is an close-to-exact symmetry in the sense of the smallness of u and

d quark’s “bare” mass and small electromagnetic correction [12].

However, with the invention of new detectors, such as the bubble chamber, and

the operation of new particle accelerators, the boom of “elementary” particles came.

The particle family got crowded and messy. This could be reflected by Lamb’s

Noble Prize speech in 1955 that “I have heard it said that the finder of a new

elementary particle used to be rewarded by a Nobel Prize, but such a discovery now

ought to be punished by a $10,000 fine”. The chaotic state ended with the so called

“eightfold way” proposed by Gell-Mann [13], which is the periodic table of

elementary particles. Every baryon or meson could find its own spot in a octet,

nonet, decuplet or singlet. By the time, Ω− was not yet discovered. Gell-Mann

predicted such a particle with J = 3
2
, Q = −1, S = −3 and mass around 1680 MeV,

and it was discovered at Brookhaven National Laboratory (BNL) [14]. The eight

fold way was put on the firm ground. To explain this particular pattern observed in

elementary particles, Gell-Mann [15] and Zweig [16][17] independently proposed the

quark model that mesons and baryons are composed of even more fundamental

fermions with fractional charges. Later, the deep inelastic scattering (DIS) data

supported the proposed composite structure of nucleons, though the physics

community had not yet accepted the quark model completely since free quarks have

never been observed experimentally. This phenomena is called quark confinement,

and that’s why Feynman used partons to describe the constitutes of hadrons. The

approximate SU(3) symmetry in the quark model is from the flavor symmetry

between u, d and s quarks in the strong interaction . The mesons are composed of a

quark and an anti-quark, or say, 3⊗ 3̄ = 8⊕ 1 in SU(3) representations. Though the

octet and singlet states might mix with each other, such as φ, ω. This is called φ-ω

mixing, and the mixing angle sin θ = 0.76, close to ideal mixing
√
2/3, where ω is
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(uū + dd̄)/√2 and φ is ss̄, see [18]. The baryons are composed of three quarks, or

say, 3⊗ 3⊗ 3 = (6⊗ 3) ⊕ (3̄⊗ 3) = 10⊕ 8⊕ 8⊕ 1. The decuplet is completely

symmetric in flavor, the singlet is completely antisymmetric, and the two octets are

partial symmetric [12]. However, such symmetry consideration has a problem in

some ground states. For example, ∆++ with J3 = 3
2
and L = 0, its wave function

should be u(↑)u(↑)u(↑), which is symmetric. Based on the Pauli exclusive principle,

the fermion’s wave function should be antisymmetric. Therefore, there should be

some hidden quantum number(s).3 This was noticed and argued by Greenberg [19].

Later, Han and Nambu proposed another SU(3) symmetry besides the normal flavor

symmetry [20]. Then the singlet state of the new SU(3) symmetry is antisymmetric,

and the newly introduced quantum number saved the quark model. The new SU(3)

gauge symmetry comes from a new degree of freedom, color . Also, the number of

colors could be obtained by experimental data of R , see [12] [21].

R ≡ e
+ + e− → hadrons

e+ + e− → µ+ + µ− (1.3)

R is about 4 at energies about 10 - 40 GeV. The theoretical calculation considering

all the quark antiquark pair contributions (except the top quark, since its mass is

about 180 GeV/c2, too heavy) is (2
3
)2 + (1

3
)2 + (2

3
)2 + (1

3
)2 + (2

3
)2 = 11

9
. There is a

factor difference about 3, which comes from the degree of freedom of color. Other

evidence comes from pion decays (π0 → γ + γ). The decay rate is

Γ(π0 → γ + γ) = N2
C(Q2

u −Q2
d)2 α

2m3
π0

64π3F 2
π

= 0.84N2
C ( eV ). (1.4)

Here α = e2

4π
is the fine structure constant , Fπ is pion decay constant, taken as 91

MeV. The experiment value for the decay rate is 7.84 eV, then NC = 3 [18] [22].

3 Also, there are some other difficulties in the quark model. First, the mysterious quark
confinement. Second, there is no compelling reason in the quark model to support the fact that
there is no qqq̄q̄ or qqqqq̄ states in nature
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Despite the reluctance of the physics community to undoubtedly accept the

quark model, it was convincingly secured by the Bjorken scaling in deep inelastic

electron-proton scattering [23]. Firstly, in the elastic electron-proton scatterings

(e + p→ e + p), the electric and magnetic form factors GE(q2) and GM(q2) (linear
combinations of F1,2(q2), related to the proton’s charge and magnetic distributions)

could be determined by dσ
dΩ
(θ, φ) data and fitted, up to 10 GeV, as a “dipole”

function of ( 1
1−q2/0.71)−2. This is consistent with an exponential distribution in radius

space and deviated from a point-like structure. Furthermore, in the inelastic

electron-proton scatterings (e + p→ e +X), the Bjorken scaling is observed, which is

a phenomena that in the large Q2 (Q2 ≜ −q2 > 0) transfer scatterings the form factor

W1(ν,Q2) and W2(ν,Q2) depend on x only (x ≜ Q2

2mν
= − q2

2p⋅q and ν = E −E′), or say,
MW1(ν,Q2)→ F1(ω) and νW2(ν,Q2)→ F2(ω), where ω = 2q⋅p

Q2 = 2Mν
Q2 . This is

consistent with the picture that the virtual photon scatters with a free point-like

charged parton and the parton takes a fraction of the longitudinal momentum /

energy of the proton (and this fraction turns out to be the Bjorken scaling variable

x). The Callan-Gross relation (2xF1 = F2) shows that the parton has spin 1
2
. This is

compelling evidence for the quark model. Besides that, the structure function shows

the existence of sea quarks and some kind of partons which interact neither

electromagnetically nor weakly - the gluons. And the gluons’ total momentum is

almost half (46%) of the proton’s momentum. Later on, jets were observed in high

energy collisions. A jet is essentially a bunch of hardrons fragmented from an

outgoing parton during a hard scattering. The is another supporting evidence for

the existence of gluons and quarks, despite that they are always confined inside of

hadrons.
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Back to the age of nuclear strong interaction, there was a major development in

theory, Yang-Mills theory [24]4. It is a non-Abelian gauge theory on the isospin

space. The local gauge symmetry was introduced by Weyl [25], however it’s not on

SU(2) space and it is Abelian. Yang-Mills theory is carried out with the SU(2) Lie

group, the non-Abelian nature brings the feature-rich Lie algebra to generate the

dynamics. As we know, the strong interaction is resulted from the SU(3) color

symmetry, not the SU(2) isospin symmetry. The application of Yang-Mills theory to

the strong interaction was carried out after the discoveries of the quark model and

the color concept. The dawn of the quantum chromodynamics came finally. After

that, the theories about the strong interaction converged to Yang-Mills idea, which

is the only one to satisfy the renormalizability conditions [26], and formed the

current quantum chromodynamics.

1.1.3 Formulation of QCD. This section is not meant to be a complete

derivation, just a outline. The content could be easily obtained from [12] [23] [18].

Let’s start from the Lagrangian density for a free quark field (with some quark

flavor)

Lquark = 3∑
j=1

ψ̄j(iγµ∂µ −m)ψj (1.5)

where j denotes three color charges: r, g and b , and the four vector index

summation is omitted according to the Einstein summation convention . If we

abbreviate the color summation into one convenient notion ψ

ψ ≜
⎛⎜⎜⎜⎜⎜⎜⎝

ψr

ψg

ψb

⎞⎟⎟⎟⎟⎟⎟⎠
(1.6)

4 Here, Yang-Mills theory is specific term for the one proposed by Yang and Mills in 1950’s, not
a general term for the gauge theories based on their idea.
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and

ψ̄ = (ψ̄r ψ̄g ψ̄b) (1.7)

Then we introduce a local (space-time dependent) gauge transformation, a rotation

in the color space, and require gauge invariance. The reason we do this is because

the flavor invariance is a global one, as we know the global symmetry won’t generate

any dynamics. The operator has to be unitary in the first place. It acts on the color

space, and doesn’t touch the space-time part, such as γµ.

ψ → Uψ and ψ̄ → ψ̄U † (1.8)

and

U †U = 1 (Unitary). (1.9)

For the unitary matrix, it could be represent by a Hermitian matrix in the form

U = eiH with H† =H (1.10)

For a 3×3 Hermitian matrix, we can decompose it into 9 linear independent

matrices,

H = θI + a ⋅ T . (1.11)

We may choose the Gell-Mann matrix λ1, . . . , λ8 for T . Anyway, this form is

general. Ta with a = 1, . . . 8 are a set of linear independent traceless 3×3 matrices.

The ea⋅T part belongs to SU(3) Lie group (if we add the phase part, it would be

U(3) group). And we will get an additional gluon field, which is a color singlet. We

will see the gluon filed is massless. Then the hadrons, which are color neutral, can

exchange a colorless gluon. Due to its zero mass, it carries a long range strong force.

This contradicts the experimental fact. So we rule out the U(3) symmetry by the

experiment observations. To demand the SU(3) local (a = a(x)) gauge invariance
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requirement, we consider an infinitesimal transformation (∣a∣→ 0)

ψ(x)→ (1 + iaaTa)ψ(x). (1.12)

And get the SU(3) generators Ta’s, which follow the non-Abelian Lie bracket

relations,

[Ta, Tb] = ifabcTc (1.13)

where fabc is the structure constant in the SU(3) Lie group. In the infinitesimal

local gauge transformation, we see that the derivatives behave like

∂µψ → (1 + iaaTa)∂µψ + iTaψ∂µaa. (1.14)

The additional term here violate the gauge invariance of the Lagrangian density L0,
so we apply the trick we’ve learned in QED by using the gauge covariant derivative

Dµ = ∂µ − igTaAa
µ (1.15)

and introduce eight new vector boson fields Aa
µ (we call them the gluon fields in

QCD, or gauge fields in the gauge theory) to absorb the additional term. The

transformation of Aµ is

Aa
µ → Aa

µ + 1

g
∂µaa (1.16)

where g is the coupling constant, we shall find this later. However, the desired

relation is not simply valid as we expect here,

Dµψ ↛ eiaTDµψ. (1.17)

This is because the non-Abelian nature of SU(3) group, see Equation 1.13. The

second term of Dµ won’t easily go away when commuting with the gauge transform
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operator,

γµTaψ → γµTa(1 + iabTb)ψ (1.18)

=(1 + abTb)γµTaψ + iabγµ(TaTb − TbTa)ψ (1.19)

=(1 + abTb)γµTaψ − abγµfabcTcψ (1.20)

≠(1 + abTb)γµTaψ. (1.21)

The easiest solution to this is to rewrite Equation 1.16

Aa
µ → Aa

µ + 1

g
∂µaa − fabcabAc

µ. (1.22)

Also, we need to take in the free gluon Lagrangian density part

Lgluon = −1
4
F µνFµν with (1.23)

Fµν = ∂µAν − ∂νAµ. (1.24)

Due to the additional term in in Equation 1.22, the invariance doesn’t hold any

more. So we rewrite the gluon field strength tensor Fµν as

F a
µν = ∂µAa

ν − ∂νAa
µ + gfabcAb

µA
c
ν (1.25)

= −1
g
[Dµ,Dν] . (1.26)

Then we get the Lagrangian density of QCD

LQCD = ∑
f,i,j

ψ̄f,i(iγµDµ −mq)ψf,j − 1

4
∑
a

F a
µνF

µν
a . (1.27)

Here, the color indices i, j run from 1 to NC = 3. NC means 3 types of color charges

(r, g, b colors). The flavor index f runs from 1 to Nf = 6. Nf means 6 types of

quark flavors (u, d, c, s, t, b quarks). The indices a, b, c run from 1 to N2
C − 1 = 8.

They reflect 8 types of gluons, corresponding to the dimensionality of SU(3) gauge

group. The ψf,i is the spin-1
2
quark scalar field with flavor f and color i. The mf is
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the quark mass of flavor f . Dµ and F a
µν are defined in Equation 1.15, 1.25. Aa

µ are

the spin-1 gluon vector fields.

Now we see g is gs, the QCD coupling constant , with

αs = g2s
4π
. (1.28)

Also, we may group LQCD into two parts.

LQCD = L0 + Lint (1.29)

L0 =∑
f,i,j

ψ̄f,i(iγµ∂µ −mq)ijψf,j

− 1

4
∑
a

[(∂µAa
ν)(∂µAν

a) − (∂µAν
a)(∂µAa

ν)]
(1.30)

Lint =∑
f,i,j

gsA
a
µψ̄f,iγ

µTaψf,j − gsfabcAµ
bA

ν
c(∂µAa

ν)
− 1

4
g2s(fabcAµ

bA
ν
c)(fadeAd

µA
e
ν)

. (1.31)

The two terms in L0 are the propagator of the free quark and gluon respectively.

The first term gAψ̄ψ in Lint is a coupling similar in QED (eψ̄γµψAµ), which

represents a gqq interaction. The later two terms AAA, AAAA in Lint are novel,

they represent ggg and gggg coupling. The Feynman vertices are shown in Figure

1.2. This QCD unique feature comes from the non-Abelian nature of SU(3)

symmetry. The self coupling of gluons make the strong interaction much different

than QED. The color screen effect behaves much differently in non-Abelian QCD

and leads to the running coupling and asymptotic freedom.

1.1.4 Calculation of QCD. Initially, the QCD coupling constant value

was experimentally measured to be greater than 1. This fact causes a failure of the

perturbation calculation method by the Feynmann diagram expansion. The Bjorken

scaling, mentioned in Section 1.1.2, needs a negative β-function. Or say, the

β-function for the strong interaction needs to be ultraviolate asymptotically free.
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Figure 1.2: QCD interaction vertices in Feynman diagram. The one on the left is

similar to QED coupling, the other two self-coupling between gluons are from the

non-Abelian nature of QCD, which make QCD much richer.

The asymptotic freedom means that the QCD interaction constant is small at a high

energy scale or at small length scales. This feature makes perturbative QCD

possible at high energies, and makes color charge “anti-screened” at large length

scales, therefore gives the Bjorken scaling (close to free quarks in a small nucleon).

The β-function, a renormalization group equation, relates the coupling constant g

with the energy scale µR in a renormalizable gauge theory, and it can be expand as

a series of powers of g.

β(g) = 1

µR

∂g

∂µR

= −(b0α2
s + b1α3

s + b2α4
s +⋯). (1.32)

According to the renormalization group theory, in a renormalizable quantum field

theory, the coupling constant always depends on (or say redefined as a function

depending on) the momentum transfer Q2, as shown in the β-function, when

considering all the corrections from higher order Feynman diagrams and using the

renormalized quantities. This is called a running coupling . In 1972, ’t Hooft wrote

the correct negative result on the board as a reply to Symanzik in a conference,
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however none of them pursued it later 5. In 1973, Politzer, Gross and Wilczek

discovered that a non-Abelian gauge theory is indeed asymptotically free [27] [28]

[29]. The consequence of such a discovery in the strong interaction was shown in a

following paper [30]. In Abelian QED, the dependence is only logarithmically

α(Q2) = α(µ2)
1 − α(µ2)

3π
log (Q2

µ2
) (1.33)

= α(0)
1 − α(0)

3π
log (Q2

m2
) (1.34)

In non-Abelian QCD, the running coupling constant is

αs(Q2) = αs(µ2)
1 + b0αs(µ2) log(Q2/µ2) +O(α2

s) . (1.35)

Consider the 1-loop correction,

αs(Q2) ≐ αs(µ2)
1 + αs(µ2)

12π
(11nc − 2nf) log(Q2/µ2) (1.36)

= 12π(33 − 2nf) log(Q2/Λ2) . (1.37)

where Λ2 = µ2 exp( −12π(33 − 2nf)αs(µ2)) . (1.38)

The QCD scale Λ denotes the energy scale where the effective coupling constant

gets to infinity, and its value is about 217 MeV. As we see, 33− 2nf < 0, this leads to
the asymptotic freedom and “anti-screen” of color charge. For 2 and 3 loops

corrections [31],

b1 = (153 − 19nf)/(24π2)
b2 = (2857 − 5033

9
nf + 325

27
n2
f)/(128π3).

For higher orders, please refer [32] [33]. The running coupling in QCD is shown

Figure 1.3 in [34] [31].
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Figure 1.3: Summary of measurements of the strong interaction αs as function of

energy scaleQ. This demonstrates running coupling constant and asymptotic freedom

in QCD [34] [31].

As a consequence of the running coupling and asymptotic freedom, in high

momentum transfer or small length scale, one can carry out a perturbative

calculation in the quantum chromodynamics. Much like in QED, we just consider a

few orders of Feynman diagrams in pQCD calculations when αs is small. This is

called perturbative QCD (pQCD). However, quarks and gluons are always trapped

in hadrons. To cope with this fact, the factorization theorem allows us to

separate/factorize the short-distance (large Q2, perturbative) processes (such as

parton parton hard scattering) and long-distance (small Q2, non-perturbative)

5 See advanced information provided in http://www.nobelprize.org/nobel prizes/physics/
laureates/2004/advanced.html

http://www.nobelprize.org/nobel_prizes/physics/laureates/2004/advanced.html
http://www.nobelprize.org/nobel_prizes/physics/laureates/2004/advanced.html
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processes (such as hardonization) [35]. Therefore, pQCD could be applied to

calculate the measurable quantities in hadronic productions.

On the other side of the asymptotic freedom, the running coupling constant gets

very large in the infrared region. The perturbative QCD is only applicable in high

energy. Lattice QCD was proposed by Wilson [36] as a non-perturbative method. In

the lattice QCD, the 4 dimensional Euclidean space is discretized as a lattice with

some spacing. The quark fields are placed on the sites and the gauge boson fields are

placed on the links between neighboring sites. The finite space distance corresponds

to a cut-off in the momentum. Continuum theory is then recovered by extrapolation

when we push the spacing to infinitesimal. The lattice QCD has a wide range of

applications, which greatly extend the reach of QCD calculations. However, lattice

QCD can’t be a cure to all QCD questions, and we need experimental data to test

all predictions from QCD theories. Furthermore, its extensive computation cost is

another practical issue. Data from nuclear experiments, especially those in

intermediate energies where pQCD is not applicable, as well as phenomenal models,

are indispensable for understanding and testing QCD.

1.2 Quark-Gluon Plasma and Heavy Ion Collisions

Considering the asymptotic freedom and running coupling at small length

scales, Collins and Perry suggested that there might be free quarks in the dense

center of neutron stars [37]. This idea is in the high density, low temperature regime

of QCD. Later, Shuryak looked into the high temperature nuclear phase transition,

and proposed a deconfined state of nuclear matter, the quark-gluon plasma (QGP):

When the energy density ε exceeds some typical hadronic value (∼ 1
GeV/fm3), matter no longer consists of separate hadrons (protons,

neutrons, etc.), but as their fundamental constituents, quarks and
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gluons. Because of the apparent analogy with similar phenomena in

atomic physics we may call this phase of matter the QCD (or

quark-gluon) plasma.

From a dimensional argument, we can infer the critical temperature TC ∼ 170
MeV when the critical energy density εC ∼ 1 GeV/fm3 [38]. This is pretty close to

the value of QCD scale Λ, therefore this phase transition is out of the capability of

the perturbative QCD. The numerical calculation from the lattice QCD showed that

the quark-gluon plasma phase transition happens at the critical temperature about

170 MeV ≈ 1012 K, see Figure 1.4 from [39].
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Figure 1.4: Lattice QCD results for ε/T 4 as a function of temperature scaled by TC .

When one heavier quark is included ( labeled as 2+1 flavor in the plot), TC is (173±8)
MeV. As shown in the plot, the degree of freedom increases dramatically near TC . εSB

is the Stefan-Boltzmann limits, which denotes the energy density contributed from

the degrees of freedom from bosons (π
2

30
T 4 from each) and fermions (7

8
π2

30
T 4 from each)

[39] [38].
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The quark-gluon plasma is believed to have existed in the first few microseconds

of the universe. One might be tempted to trace signals back to that primordial time

to infer QGP’s properties and the early universe. One candidate is the color neutral

photon. However, the photon signals from that era are buried by the ones from a

much later stage when the hadrons were already formed. Current left-over photons

of the primordial universe come from the moment when the photons decoupled from

the electrons and neutral hydrogen atoms started to form. These photon remnant

are referred as the cosmic microwave background . Therefore, the signatures of QGP

in the early universe are hard to trace back by astronomy observations.

Nevertheless, we can achieve such a high temperature, high energy density

environment in laboratories to create a miniscule fireball, a.k.a. a quark gluon

plasma, by colliding heavy ions with each other. This is the heavy ion collision.

And such colliders are called heavy ion colliders . Such experimental attempts have

lasted for more than two decades. The energy of each pair of colliding nucleons in

the center of mass frame (
√
sNN) increased from 1 GeV at Bevalac of the Lawrence

Berkeley National Laboratory (LBNL), to 5 GeV at the Alternating Gradient

Synchrotron (AGS) of the Brookhaven National Laboratory (BNL), to 17 GeV in

the Super Proton Synchrotron (SPS) of the European Organization for Nuclear

Research (CERN). No definite evidence had been found until SPS indicated the

existence of a dense state of matter, possibly partonic [40]. The Relativistic Heavy

Ion Collider (RHIC) was built with the goal of searching for the quark-gluon

plasma, and started operation in 2000 with
√
sNN up to 200 GeV. The e+e− pair

production from direct photons agrees with a temperature at least 300 MeV at the

time 0.6 fm/c after collisions [41], this is well above TC from LQCD calculation. The

data from RHIC has revealed quite a lot of QGP signatures and found that the new

state of matter is strongly coupled. The original picture for the quark-gluon plasma
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is more like an ideal gas, so now the QGP is refered as the strongly coupled

quark-gluon plasma (sQGP). Along the Large Hadron Collider (LHC) commissioned

at CERN in the year of 2009, the energy frontier again rises with
√
sNN up to 2.76

TeV in Pb+Pb collsions and 5.02 TeV in p+Pb collisions. New measurements came

out, such as less (direct) quarkonium suppression in low pT region at LHC though

its higher energies and higher temperature which is explained by the re-combination

mechanism in QGP [42] [43] [44], momentum imbalance and jet-quenching from full

jet reconstruction analysis [45] [46] [47], W and Z bosons observations [48] [49] [50].

The most striking one is long range correlations, even sizable v2 and v3 values,

discovered in small systems, such as p+A collisions. We will discuss it in detail in

Section 1.4. This seemingly collective behavior agrees with the picture that there is

a thermally equilibrated state in a short time after the collisions (order of fm/c

seconds). Though the system size is small, the number density can be high. If there

are enough particles and the ratio between mean free path and system size is small,

a statistical equilibrium could be reached. This is unexpected, and needs further

investigation to confirm or dispute this idea. This is one of the motivations of this

thesis research.

1.2.1 Elliptic Flow, Hydrodynamics and Equilibrium. When two

nuclei collide with each other, the nuclear matter overlaps in an ellipsoid shape.

Such a spacial anisotropy leads to a momentum anisotropy, and leaves the

observable hadron production in a spacial anisotropy, which is called elliptical flow ,

See Figure 1.5. The hadron production is dominated by the elliptical flow, or say

the 2nd order Fourier coefficient v2

d2N

dφdpT
= N0[1 + ∞∑

n=1

2vn(pT ) cos(n(φ −Ψn))] (1.39)

≈ N0[1 + 2v2(pT ) cos (2(φ −ΨRP))] (1.40)
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where ΨRP denotes the azimuthal angle of the reaction plane, which is the plane

defined by the impact parameter direction x and the beam direction z in Figure 1.5.

φ is the azimuthal angle of a emitted particle. All the azimuthal angles are defined

in the x-y plane. And vn can be calculated by

vn = ⟨cos(n[φ −ΨRP])⟩ (1.41)

The elliptic flow at RHIC was first reported by [51], then [52]. Both used the

Figure 1.5: Elliptical flow and reaction plane6

reaction plane method mentioned in Equation 1.39. An alternative method is using

the two particle correlation, discussed in Section 3.6 in details,

dNAB

d∆φ
∝ 1 + ∞∑

n=1

2⟨vAn vBn ⟩ cos(n∆φ). (1.42)

Both methods are equivalent to first order. The two particle correlation method has

a few advantages. First, it doesn’t require a full azimuthal coverage; Second, it

doesn’t use event-by-event reaction plane determination; Third, it could have more

6 https://www.phenix.bnl.gov/WWW/run/drawing/index.html

https://www.phenix.bnl.gov/WWW/run/drawing/index.html
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information than the flow, such as the jet correlations. The first correlations result

was published in [53].

The elliptic flow data agree with the hydrodynamics model very well, see

Figure 1.6. This has a strong indication that local thermal equilibrium is

established early in collisions and the QGP experiences a hydrodynamical evolution.

The thermal equilibrium in such a short time can’t be established within an ideal

gas model, therefore, sQGP and ideal liquid is the new picture we get from RHIC’s

data. The viscosity value can be extracted from the elliptic flow measurements, and

the viscosity entropy ratio (η/s) is surprisingly small, almost close to the quantum

limit predicted by the uncertainty principle (η/s ≳ h̵ with dimensional argument)

[54] and the AdS/CFT calculation (η/s ⩾ h̵
4π
) [55] [55]. This is a universal feature of

a strongly interacting system, and independent of the detailed structure.
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The statistical model has been applied to calculate the particle yields ratio by

Fermi [59] and Hagedorn [60]. The data from RHIC agree with the statistical

models, see Figure 1.7, which might indicate a chemical equilibrium is achieved

before hadronization.
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1.2.2 Jet Quenching and Energy Loss. Hard scatterings of partons

happen well before the formation of the quark-gluon plasma. The scattered partons

have to travel through, radiate gluons and lose energies to the hot QCD medium.

Then the jets associated with those partons should be softer and wider. It was

suggested that the energy loss in a deconfined color medium is larger than in a

hadronic medium [62]. A significant consequence is the depletion of high pT

hadrons, such a phenomenon is called jet quenching .

The first observation was published in [63], where a nuclear modification factor

RAA is defined as

RAA(pT ) = (1/Nevt)d2NA+A/dpTdη(⟨Nbinary⟩/σN+N
inel )d2σN+N/dpTdη (1.43)

where ⟨Nbinary⟩ is the average number of inelastic N+N collisions per event. RAA

compares A+A yields with a sum of independent N+N collisions (binary scaling).

Jet quenching is shown by RAA < 1 at high pT regions with various particle species

in A+A collisions at RHIC and LHC. π0 RAA in central, peripheral Au+Au

collisions and p+p collisions are shown in Figure 1.8

Besides the single particle method, two particle correlation provides insight into

the jet quenching as well [64]. IAA is defined as a quantity to compare A+A

collisions with a p+p reference

IAA(∆φ1,∆φ2) =
∆φ2∫

∆φ1

d∆φ
dnAB

AA

d∆φ

∆φ2∫
∆φ1

d∆φ
dnAB

pp

d∆φ

(1.44)

where n means counts per event per trigger particle pair yields.

Jet quenching is manifested by missing or suppressed awayside jet (see Figure

1.9a) and IAA < 1 (see Figure 1.9b) in central A+A collisions.
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quenching appears in large pT regions in central Au+Au collisions [38].

High pT particles are more likely coming from the region near the surface of the

hot QCD medium. This is called surface bias . Consequently, the single particle

yields can’t give too much information about the interior of the medium. In two

particle correlations, the leading triggers are usually chosen as high pT particles,

which tends to be from the near surface area, in other words, the partner particles

have to travel a long distance inside the medium to survive. They undergo more

medium interactions and modifications. This is one advantage of the two particle

correlation method in the study of medium modifications.
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(b), the awayside jet’s IAA < 1 in central Au+Au collisions. While the nearside jet’s

IAA is not suppressed. [64]

1.3 Cold Nuclear Matter Effect

The comparisons between heavy ion collisions and p+p collisions, such as RAA,

IAA, have revealed a clear difference between these two system. However, in order to

put the QGP argument on the solid ground, we need to disentangle the hot medium

effect and the cold nuclear effect (CNM). The cold nuclear effect is the observed

phenomena describing the final production differences between the nucleus (or

nucleon) nucleus collisions and the nucleon nucleon collisions without any presence

of the opaque hot color medium, or say, quark-gluon plasma. Traditionally d+Au

collisions are believed not to create QGP. Even if QGP is created in such a small

system, its effect is much smaller than the one in A+A collisions. Therefore, the

d+Au collisions at RHIC and p+Pb at LHC serve as a good baseline for the A+A
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collisions in the quark-gluon plasma search. Sometimes, we may refer the cold

nuclear matter effect as one of initial state effects, and the hot medium effect as the

final state effect. The cold nuclear matter effect includes the modifications of parton

distributions [65], parton rescatterings [66] and a number of others. Here, the name

parton is proposed by Feynman as a generic word for the particle constituent inside

of a nucleon, which means a quark or a gluon. PHENIX charged hadron production

data from d+Au collisions at RHIC have shown such modifications in forward /

backward rapidity [67] and midrapidity [68].

The cold nuclear matter effect includes:

• Nuclear Modification of Parton Distribution

• Cronin Effect

• Gluon Saturation

• Radiative Energy Loss

• kT Effect

And, they may not be distinctively different. They might have common physics

origin, or similar observable effects on the other hand.

1.3.1 Nuclear Modification of Parton Distribution. According to

the factorization theorem (see Section 1.1.4), the calculation of the inclusive cross

section could be factorized into the parton distribution function f(x,Q2), the
fragmentation function D(z) and a perturbatively calculable differential cross

section.

dσp+p→h+X =∑
abc
∫ dxadxbdzc fa/p(xa,Q2)fb/p(xb,Q2)dσ̂a+b→c+d(Q2)Dc→h(zh). (1.45)
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The parton distribution function (PDF) f(x,Q2) is the parton probability density

function in terms of its longitudinal momentum fraction x in a free nucleon and the

energy scale Q2.

x ≜ ppartonL

pnucleonL

. (1.46)

The parton distribution function is obtained by a global analysis of the data from

the deep inelastic scattering, Drell-Yan process (q + q′ → γ/Z → l + l′), W -lepton

asymmetry, inclusive jet and other measurements. The most commonly used parton

distribution function sets include CTEQ by CTEQ collaboration, HERA by H1 and

ZEUS collaborations. An example PDF from CTEQ6 is shown in Figure 1.10 from

[69]. However, the uncertainty of the gluon distribution function is still large even

with recent DIS and inclusive jet data in CTEQ6, see Figure 1.11. In the hard

scattering events at RHIC energy, the gluon processes dominate in the interesting

physics, such as the π0 triggered events, see Figure 1.12. In this analysis, the events

triggered by π0 with 5 < pT < 15 are analysed. This is one reason that we need to

keep it in mind.

One way to construct the parton distribution function inside a nucleus fq/A(x)
is to use a simple convolution between the parton distribution function fq/p(y) and
the distribution of nucleon momenta inside of a nucleon fp/A(z),

fq/A(x) =∬ fq/p(y)fp/A(z)δ(x − yz)dydz.
Analysis of the muon DIS data in the iron and deuterium, the parton

distribution function is modified when the nucleon is part of a nucleus [71]. In the

same way, the parton distribution in a nucleus is not a naive sum of the PDFs from

constituent nucleons. This leads to the nuclear parton distribution function (nPDF).

The nuclear modification to the free proton PDF is quantified by

RA
i (x,Q2) ≜ fA

i (x,Q2)
fi(x,Q2) . (1.47)
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Figure 1.10: Overview of the CTEQ6M parton distribution function at Q = 2 GeV

[69]

Here, fA
i (x,Q2) is the free nucleon PDF, and fA

i (x,Q2) is the PDF of a nucleon

inside of a nucleus of species i. An illustration of the nPDF is shown in Figure 1.13.

There are a few known nuclear effects in different nPDF regions shown in Figure

1.13. They are listed as below:

• Shadowing effect (x ≲ 0.04)
In small momentum fraction x (x ≲ 0.04) region, the space distributions of

partons are large due to the uncertainty principle. The destructive interference

between wave functions of partons in different nucleons causes the number of

low x partons decreased. This phenomena is called shadowing effect . Part of it
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Figure 1.11: The uncertainty of CTEQ6 gluon parton distribution functions at Q2 =

10 GeV2 [69]

[GeV/c]
T

p0
π

2 4 6 8 10 12 14 16 18 20

F
ra

c
ti

o
n

a
l 
C

o
n

tr
ib

u
ti

o
n

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

q+q->q+q

q+g->q+g

g+g->g+g

Figure 1.12: The fractional contribution of parton scattering processes to π0 triggered

events in p+p collisions at
√
sNN = 200 GeV. The other processes are less than 1%

and not shown [70].



44

0.2

0.6

1.0

1.5

10
-3

10
-2

10
-1

1

shadowing

antishadowing

EMC-
effect

Fermi-
motion

Figure 1.13: An illustration of nPDF with different modification regions marked [65]

could be attributed to parton fusions, where wave functions of partons in

different nucleons start to overlap with each other. This effect is greater for

gluons, since the low momentum gluons dominate sea quarks at low x.

• Anti-shadowing effect (0.04 ≲ x ≲ 0.3)
The constructive interference between partons in different nucleons results in

an enhancement at larger x (0.04 ≲ x ≲ 0.3). This is the anti-shadowing effect .

• EMC effect (0.3 ≲ x ≲ 0.8)
The EMC effect refers to the unexpected deficit in the region of 0.3 ≲ x ≲ 0.8
discoverd in muon DIS experiment [71]. Some models are proposed based on

single nucleons, pion enhancement, multiquark clusters, dynamical rescaling

and shadowing [72] [73]. However, none of them match the data well. The

origin of the EMC effect still remains a puzzle to the physics community.

• Fermi motion (x ≳ 0.8)
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The huge enhancement at large x (x ≳ 0.8) is due to the Fermi motion (EF ∼
33 MeV, pF ∼ 250 MeV/c for heavy ions, such as Pb and Au) of the

constituent nucleons in a nucleus. This can be understood by the Fermi gas

model in a nucleus. The Fermi energy is about 20 - 40 MeV, the heavier

nucleus, the larger Fermi Energy. And the Fermi momentum is determined as

pF =√2mEF . (1.48)

Here, m is the mass of the nucleon. Under the Fermi surface, the nucleons

undergo a chaotic motion, which is the Fermi motion. The Fermi momentum

has its own effect on nuclear reactions. In the collisions with nucleons inside of

nuclei, the Fermi motion would smear the effective energy, and lower the

nuclear reaction’s threshold energy. Therefore, the Fermi motion enhances the

particle production in the sub-threshold or near-to-threshold collisions.

The most commonly used nPDF’s are EPS09 [65]. However, EPS09 is a global

fit of data with all impact parameters b. Therefore, the impact parameter averaged

EPS09 doesn’t contain any spatial dependence. The impact parameter dependent

parton distribution functions EPS09s and EKS98s are construct and published

under the assumption that the geometric dependence can be formulated as a power

series (up to 4) of the nuclear thickness functions TA [74].

1.3.2 Cronin Effect. The hadron production in the intermediate pT

range about 2 < pT < 6 GeV/c in the p+A collisions is enhanced compared with the

scaled p+p values [75] [76]. This effect is refered to as the Cronin Effect , named

after the first discover. It is believed to be caused by the multiple scattering of the

interacting partons. This Cronin effect is best shown in the RdA and Rcp plot, see

publications by PHENIX [77] [67] [68] [78], PHOBOS [79], STAR [80]. The

BRAHMS result [81] shows that the Cronin peak appears at η = 0, disppears at η =
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1, and the suppression happens at all pT when η = 3.2, see Figure 1.14. Similar

results are published by PHENIX [67]. Generally speaking, the RdA and Rcp plots

should show some suppression at low pT and enhancement at intermediate pT , then

come back to 1 at large pT . And in central Au+Au collisions, the severely

suppressed RAA is one signature of the jet quenching and energy loss in the quark

gluon plasma [63].
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η = 0, 1.0, 2.2, 3.2 [81]

.

Recently in d+Au collisions, a surprising enhancement was observed in RdA

that is qualitatively similar to the Cronin enhancements seen at RHIC in RAA.

However this enhancement appears only in a higher momentum region and

surprisingly only in peripheral collisions, so it is not expected to be related to

Cronin physics. Still the data in this thesis is relevant to the interpretation of this

result and it is discussed further in Section 5.3.

1.3.3 Radiative Energy Loss. The radiative energy loss is the medium

induced gluon bremsstrahlung, which leads to energy loss due to the gluon radiation

and exchange in the medium. There are three possible scenarios. The first one is the
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initial state energy loss in the nucleus before the hard scattering. This decrease the

momentum of the incoming parton which undergoes the hard scattering. Essentially,

it is equivalent to the change of x (shift to the left), or say, the modification of the

parton distribution function. The second one is the final state energy loss where the

outgoing hard scattered parton or fragmented hadron lose energy when going

through the medium, which is equivalent to the change of the fragmentation

function. The last one is Bertsch-Gunion radiation, where the parton experience no

hard scattering in the cold nucleus. The energy loss in cold nuclear matter could be

large; the initial state E-loss might be larger than the final state E-loss in the

asymptotic limit; the initial and final state radiative energy loss might have different

path length dependence [82]. The theoretical models are reviewed in [83].

1.3.4 Gluon Saturation. The study of the nuclear modification factor

RdA in d+Au collision at different rapidity and centrality shows a significant

forward rapidity suppression, especially in a central collision [84]. The

midrapidity-forwardrapidity and forwardrapidity-forwardrapidity two-particle

correlations are observed to be suppressed for d+Au collision compared with p+p,

according to a PHENIX result [85]. This effect has been predicted as a signature of

the color glass condensate [86]. In this scenario, the short-life fluctuation partons

are frozen out due to the time dilation in a fast moving nucleons, and exist as a

large static source of low momentum partons, see Figure 1.15. The gluon density at

a small momentum fraction x is the result from the balance of gluon recombination

(reducing the number) and gluon splitting (increasing the number), and peaks

about a characteristic momentum QS ∼ A1/3

xλ , namely the saturation momentum

(here λ is 0.3 determined from data in [85]). Such an effect is called gluon

saturation, because below this momentum scale, no more gluons can be created due

to the dominance of the recombination. It is predicted that the gluon saturation
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gets prominent when the jet’s pT is close to Qs, which is about 1-2 GeV/c in RHIC

and increases with nuclear size as the formula indicates. Therefore, the large

nucleus and small x, which is equivalent to the forward region, are favored to test

the gluon saturation phenomena. Of course, some other theories could explain such

a suppression in d+Au collisions, such as the nuclear shadowing. To distinguish

between these models, the forward azimuthal correlation is suggested [87].

Figure 1.15: Left: a rest nucleon, the parton fluctuation is complicated, non-

perturbative, and short lived. Right: a high energy nucleon, the thickness is

compressed due to the length contraction, the short-lived parton fluctuation becomes

a static source of parton due to the time dilation. [87].

1.3.5 kT Effect. In the leading order approximation (LO) of QCD

scattering, which corresponds to 2 on 2 scattering reactions, such as q + g → q + g,
the transverse momentum of one outgoing parton should be exactly balanced with

the other side parton. However, due to the finite size of the nucleons and the

uncertainty principle, the initial partons are expected to have a transverse

momentum on the order of 300 MeV/c [88]. The pT imbalance is further spoiled by

the fact that the hard scattered parton could radiate fragmentation photons or

bremsstrahlung gluons beyond the LO QCD. Moreover, γ+A and π+A collisions

show that ⟨kT ⟩ (kT is defined as the pT sum of the outgoing partons) is proportional

to A1/3, which could results from the multiple scattering in the nucleus since

L ∼ A1/3. In p+A collisions, ⟨kT ⟩ increases more slowly than A1/3 [89]. These effects
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are collectively called the kT effect or kT broadening . The next-to-leading order

(NLO) pQCD calculation is insufficient to describe the magnitude of pT imbalance

measured in the experiments which is about a few GeV/c in dimuon, diphoton and

dijet pairs [90]. The relationship between the kT effect and the presence of the

nuclear matter, no matter hot or cold nuclear matter, is yet to be discovered by

experiments. A previous kT measurment by STAR has shown that there is no major

kT difference in p+p and d+Au collisions [91]. A systematic investigation of kT

broadening in direct photon production using fixed-target and collider data shows a

pattern of deviation from NLO QCD calculation [90].

1.4 Collective Effect in d+Au Collisions

Though compelling evidence supports that there is a hot and dense medium

created in A+A collisions, d+Au collisions are traditionally believed to be too small

to create the quark-gluon plasma. Recently, an unexpected near-side long range

(large pseudorapidity range) correlation was observed in high multiplicity p+p

collisions [92]. Then, the results in p+A collisions, [93], [94] [95] [96] from p+Pb at

LHC, [97] [98] from d+Au at RHIC, indicate some collective behaviour in the small

p+A systems.

The series of surprising discoveries began with “shoulder” and “ridge”

structures in two particle correlation measurements at RHIC’s Au+Au data.

Central Au+Au collisions show modifications to p+p’s Gaussian-like away-side

peak. The away-side peak is broader and even splits to two “shoulders” in the

intermediate pT region. This was first observed in [99], then confirmed in [100] [101]

[102]. For the near-side, the correlations extend a large pseudorapidity range in

central Au+Au collisions, and such a structure is called “ridge”. It was first

observed in [99], then [103] [104] showed that it elongates across several units in ∆η.
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Figure 1.16 1.17 visually demonstrates the ridge and shoulder structure in central

A+A collisions. The spectrum of ridge particles are softer than jet particles, close to

the inclusive hadrons [105]. And the fraction of baryons is close to the inclusive

hadrons too [106].
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Figure 1.16: Ridge structure demonstration. In Panel (a), the ridge structure is

missing in peripheral p+Pb collisions. In Panel (b), the ridge structure is clear in the

near side and across a large rapidity range in central p+Pb collisions. Here, ATLAS

classifies the central and peripheral events by summed transverse energy [95].

.

Theoretical interpretations of the away-side shoulder structure initially focused

on the Mach cone, a final state effect. However, the Mach cone shock wave is

unlikely to be observed in conical angular correlations after hadronization [107] or

even before it [108] [109]. Later on, people started to realize the importance of once

neglected higher order of flow harmonics, especially v3 in the role of these structures.
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Figure 1.17: The shoulder structure in central Au+Au collisions. The deficit in

∆φ ∼ π is the “head”, and the excess in ∆φ around π is the “shoulder”. The plot is

adapted from [100].

.

Reference [110] showed that the geometry fluctuation in initial state could lead to

triangular flow by a simple Glauber model (See Section 2.2.1.3) and AMPT (a

multiphase transport model), then Reference [111] used fKLN model to argue that

higher order flow harmonics could result from the initial state fluctuation. ALICE

(A Large Ion Collider Experiment, an experiment collaboration at LHC) published

their v2 v3 measurement, and agree with such idea that the double peak shoulder

can be explained by v3 [112]. PHENIX published v2 v3 v4 measurements, and their

data support the Glauber model (simple statistical fluctuation) instead of MC-KLN

(a color glass condensate kT -factorization approach) prediction [113]. Then more

data of higher flow harmonics came out [114] [115] [116]. One thing to note, the n-th

order event plane Ψn might not be the same or even correlated with the event plane

ΨRP defined in Subsection 1.2.1. Figure 1.18 demonstrates that a triangular shape

in the initial state could come from probabilistic fluctuations in the Glauber model.
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Figure 1.18: Triangluar fluctuation in Glauber MC simulation. The distribution of

nucleons on the transverse plane with ε3 = 0.53 from Glauber model demonstrates

the highly possible origin of v3 flow. The wounded nucleons (participants) are shown

in solid circles, the spectators are shown in dotted ones [110].

Various models have been proposed to explain the experiment observed ridge,

see this review [117]. Now, people converge to the idea of initial geometric

fluctuation and hydrodynamical flow proposed by [110]. Still, nobody anticipated

such a phenomenon to happen in a small system such as p+p and d+Au collisions.

Another surprise came from CMS’s measurement in p+p collisions in 2010 [92].

They observed that in high multiplicity events (Noffline
trk ≥ 110) in p+p collisions at√

sNN = 7 TeV, a pronounced structure emerges in the 2-dimensional (∆φ and ∆η)

correlation functions for particle pairs with 1 < pT < 3 GeV/c and 2.0 < ∣∆η∣ < 4.8 and

∆φ ≈ 0. This structure is very similar to the ridge structure in central Au+Au

collisions.

In 2012, CMS found a similar ridge structure in ∣∆η∣ < 4 in high multiplicity

events in p+Pb collisions at
√
sNN = 5.02 TeV collected in a short 8-hour run, but
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significantly larger [93]. Later in the same year, using the same pilot p+Pb run,

ALICE considered the difference between central (0-20%, higher multiplicity) and

peripheral (60-100%, lower multiplicity) events in ∣∆η∣ < 1.8 to investigate it. The

assumption here is that the non-flow contribution, such as jets, should be the same

in central (high multiplicity) and peripheral (low multiplicity) events. And the long

range correlation should be none or very small in the peripheral events. They found

ridge-like structures in both near and away-sides with almost identical size. They

projected the two-ridge structure on to ∆φ and obtained non-zero v2 and v3 values

[94].

LHC started their first p+Pb run in February 2013, which delivered ≈ 30 nb−1

collisions. Using these data, ATLAS published their results in [95]. To avoid the

correlation/bias from the charge particle multiplicity, they used ∑EPb
T > 80 GeV and

< 20 GeV to classify the central and peripheral events respectively. Here, ∑EPb
T is

the transverse energy summed over 3.1 < ∣η∣ < 4.9 in the direction of the Pb beam.

The results were the same, close-to identical ridges on both sides and non-zero v2

and v3 after central-peripheral subtraction. CMS also published their results from

this 5.02 TeV p+Pb run [96], with comparison to 2.76 TeV Pb+Pb collisions. To

reduce the non-flow contribution on the away-side, they also used 4 particle

correlations to obtain v2 values. Their v2 values are consistent with ATLAS from

central-peripheral subtraction method (this subtraction is used to remove the jet

correlations), and the difference in the low-multiplicity events used for the

subtraction could explain the slight discrepancy in two experiment data. In the

4-particle correlation method results, the ones from ATLAS are systematically

higher than the ones from CMS, see Figure 1.19. They found v3 values are very

similar in p+Pb and Pb+Pb collisions, see Figure 1.20.
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Figure 1.19: v2 of p+Pb from CMS and ATLAS [96]. The red dotted line is from CMS

central-peripheral subtraction method, and the open circle is from ATLAS with the

same method. They matches with each other, and the difference can be attributed to

the different choice of peripheral events. The solid and open square are the 4-particle

correlation results from two experiments respectively, and they are inconsistent with

each other.

PHENIX followed up with d+Au collisions at
√
sNN = 200 GeV [97]. They

found similar but larger v2, albeit with large uncertainties. When divided by the

initial state eccentricity (from MC simulation), v2 shows a qualitatively nice

trending with the multiplicity, including the measurements of d+Au, Au+Au from

RHIC and p+Pb, Pb+Pb from LHC, see Figure 1.21. This agrees with the idea that

the final product anisotropy comes from the initial state geometric anisotropy. One
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Figure 1.20: v3 of p+Pb and Pb+Pb from CMS measurements [96]. They share

similar dependence on the multiplicity.

thing to note, due to the limited acceptance in PHENIX, the pseudorapidity

separation is 0.48 ⩽ ∣∆η∣ ⩽ 0.7 and the uncertainties are large in this publication.

ALICE published their results of π±, K±, K0
S, p(p̄) and Λ(Λ̄) measurements at

midrapidity in p+Pb collisions at
√
sNN = 5.02 TeV. The pT distributions for

different centralities (multiplicities) shows that pT is harder (larger) in more central

(higher multiplicity) events. And a clear mass ordering was reported, where

⟨pT ⟩Λ > ⟨pT ⟩p > ⟨pT ⟩K > ⟨pT ⟩π± , see Figure 1.22. Such a mass ordering phenomena

were attributed to radial flow in Au+Au collisions [118] [38].

To improve the uncertainties, PHENIX published their measurements using the

muon piston calorimeter(MPC) in the Au going direction [98]. They measured

correlations between charged hadrons in ∣η∣ < 0.35 and energy deposited in the

calorimeter towers for −3.7 < η < −3.1. The η separation is greater than 2.75 in this

measurement. They used the energy deposited in Au going direction to get the

event plane and calculated v2. Using minimum bias p+p as a control, they obtained

the 2nd Fourier coefficients c2 in the two systems. In order to eliminate the non-flow

contributions, such as jets and resonance decays, they constructed c2 as a sum of
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Figure 1.21: The eccentricity-scaled anisotropy v2/ε2 vs charged particle multiplicity

(dNch/dη) for d+Au and p+Pb collisions. Also, Au+Au and Pb+Pb data are shown.

v2 are in similar pT selections. The colored curves are for different ε2 values from

different nucleon representations in MC simulations. No systematic error is shown.

And the multiplicities of d+Au and p+Pb are from HIJING [97] (For HIJING, see

Section 5.9).

elementary (non-flow) and non-elementary (flow) parts. The elementary part is

scaled by the sum of transverse energy due to dilution. They argued that the

contribution from the elementary part is small. They measured v2 from inclusive

hadrons at midrapidity up to 4.5 GeV/c, and this result is lower than the previous

one in [97] which has large uncertainties. They also measured v2 from π± and p(p̄),

and observed a mass ordering pattern similar to Au+Au collisions. They compared

the result with hydrodynamic model calculation and the one from ALICE

measurements, see Figure 1.23.
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Figure 1.22: The mass ordering in p+Pb collisions at
√
sNN = 5.02 TeV [119].
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Figure 1.23: v2 from identified π± and p(p̄) from [98]. In panel (a) the data are

compared with hydrodynamic model [120] [121]. In panel (b), data are compared

with p+Pb collisions from ALICE measurement [94].

All experimental data support that there is some collective effect in central /

high multiplicity p+A collisions. Whether it comes from the final state effect, such
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as a dense opaque medium, or from some initial state effect, such as cold nuclear

matter effects ( including gluon saturation), it has to be in a coherent way, and

survive the hadronization phase. If it is flow, as indicated by model comparisons in

the publications mentioned above, is there any thermal equilibrium or

quasi-equilibrium in such a small system?

1.5 Statement of Purpose

In Au+Au collisions at RHIC, quite a lot QGP signatures have been found, in

different approaches, such as the flow, the jet quenching, the charmonium

dissociation and recombination, heavy flavor E-loss and mass hierarchy. Though

there is no definite claim that QGP has been established in A+A collisions, people

do believe the existence of QGP in heavy ion collisions. It’s like a Bayesian

inference, the more observations come in, the stronger belief we hold. Anyway, at

least, all previous measurements are consistent with pQCD based model calculations

and the picture that a hot dense color medium is created in such collisions. In order

to disentangle the final state QGP effect from the cold nuclear matter (including

both initial and final state effects), d+Au collisions serve as a promising baseline.

More cold nuclear matter effects than p+p, and just no (or little) QGP there. Data

have to be established in such a control object. This is the first objective we want to

accomplish.

The observations of unexpected long range correlations show non-zero vn from

collective flow in d+Au collisions during the course of my research. The

experimental data agree reasonably with hydrodynamical model calculations,

though the color glass condensate theory has not yet completely ruled out for these

observables. Hydrodynamic models enjoy their success in heavy ion collisions,

however, the application in the small d+Au system might be still questionable. If



59

there are flows, there could also be energy loss, though the medium and hence the

effects might be small. The two-particle correlation method is well suited for energy

loss measurements, as well as the flow ones. The second object is to search for extra

small E-loss effects besides the cold nuclear matter effect in d+Au collisions.
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2 Experimental Facilities

2.1 RHIC

The Relativistic Heavy Ion Collider (RHIC ), as shown in Figure 2.1a, is a

dedicated heavy ion collider at Brookhaven National Laboratory(BNL) in Upton,

New York, USA. RHIC began its physical operation from the year of 2000 with

highest energy
√
sNN = 200 GeV for heavy ions and 500 GeV for protons. RHIC is

capable of colliding a variety of beam species, including protons, copper, gold, and

uranium nuclei, in a wide span of energy ranging from a few GeV to its highest

energy level. RHIC has its own advantage to collide polarized protons for studying

the spin structure of particles. Two small experiments BRAHMS and PHOBOS

have finished their operation, and the other two experiments at RHIC, namely

PHENIX and STAR are still in operation.

(a) RHIC with the beam line indicated (b) PHENIX detectors

Figure 2.1: Experimental facilities (Photos from [122]).
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2.2 PHENIX

PHENIX, the Pioneering High Energy Nuclear Interaction eXperiment, shown

in Figure 2.1b, is a research experiment at RHIC to study the energetic collisions

between heavy ions and protons, with the mission of discovery and examination of

the new state of matter, namely the quark-gluon plasma, as well as exploration in

the spin structure of protons. PHENIX is designed to optimize the capability to

detect the rare process with better resolution and momentum range for penetrating

probes, such as leptonic (including electrons and muons) and photonic channels.

STAR has larger acceptance coverage due to their barrel Time Projection

Chamber(TPC). Two different detector configurations in the STAR and PHENIX

experiments can provide both teams their own advantages and the cross-check of

their results from different techniques. This complementary setup of experiments is

beneficial to the whole physics community. The future installation of new Silicon

Vertex Detector(VTX) in Run11 will provide a full azimuthal coverage. The current

PHENIX acceptance coverage is shown in Figure 2.2.

PHENIX is a combination of different particle detectors, which are on four

spectrometer arms. The variety of PHENIX detectors provides more measurements

and cross-checks for the analysis. The north-south spectrometer arms are along the

beam line at the forward and backward rapidity region, with 1.15 < η < 2.44 or

−2.25 < η < −1.15. These two muon arms are designed specifically for muon

identification and track reconstruction. The east-west spectrometer arms are on the

central rapidity region, on the side of the beam line. The two central arms cover

−0.35 < η < 0.35 in the rapidity and 180○ in azimuthal angel. The primary goals of

the central arms include photon/electron reconstruction, charged particle tracking,

particle identification. The detector configuration of PHENIX Run08 is shown in

Figure 2.3.
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Figure 2.2: PHENIX acceptance plot, φ is the azimuthal angle around the beam line,

rapidity is along the beam line (Plot from [122]).

2.2.1 Event Trigger and Characterization. The inner detectors

consist of Beam-Beam Counters(BBCs), Zero Degree Calorimeters(ZDCs) and

Reaction Plane Detector(RxNP), which are responsible for the event triggering and

characterization, such as determination of the event location, centrality and the

reaction plane. The condition required to trigger the data collection for an event is

called a trigger 7.

2.2.1.1 Beam-Beam Counters. The BBC detectors, shown in Figure

2.4, are placed around the beam pipe at ±144 cm from the geometry center of

PHENIX detector covering 3.1 < η < 3.9 over full azimuth. The detector consists of a

set of 64 photonmultiplier tubes (PMT) which measure the Cherenkov light from the

charged particles passing through the quartz radiators in front of each PMT. The

7 We have two trigger concepts through out this thesis. One is the trigger condition discussed
here, the other one is the trigger particle discussed in Section 3.6. The two concepts are totally
different, the only common thing is their name.
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Figure 2.3: PHENIX detector configuration for Run8, top: beam veiw, bottom: side

view (Plot from [122]).

most important feature of BBC is the excellent timing resolution, about 54 ± 4 ps
for each element. The collision time T0 is determined by the average arrival time of

the leading charged particles into the South and North BBCs. This time is used by

the timing synchronization, such as for the TOF detectors of PHENIX to identify

hadrons. The collision location, namely Z-vertex, is determined by the difference of

the time from the two BBCs with resolution about 1 cm, which is part of the Local

Level 1 trigger which rejects the collision with Z-vertex outside of the center

interaction region (> 30 cm). The collision vertex is also used as the origin point for

tracking subsystems. The resolution gets worse for lower centrality, smaller size of

beam species and lower beam energy.
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Figure 2.4: BBC detector construction: An individual BBC PMT and quartz radiator

(left). A BBC bundle as constructed from 64 PMT and radiators (center). A BBC

as installed around the beam pipe behind the central magnet (right) (Photos from

[122]).

2.2.1.2 Zero Degree Calorimeters. The ZDC detectors, shown in

Figure 2.5, are a pair of hadronic calorimeters located at 18 meters away from the

center of PHENIX along the beam pipe, covering θ < 2 mrad (6η > 6). They are

positioned behind the dipole bending magnets such that the charged beam remnants

are swept away from their path by the magnetic field. ZDCs are able to catch the

spectator neutron remnants with the trajectory very close to the beam line. ZDCs

are designed to completely contain the hadronic showers of the spectator neutrons.

Figure 2.5: Placement of the ZDC beyond the forward dipole magnets(left). A ZDC

as installed between the RHIC blue and yellow beam pipes(right) (Photos from [122]).
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2.2.1.3 The Centrality Definition. PHENIX uses the concept of

centrality to characterize the geometric quantity impact parameter b such that the

centrality refers to the percentiles of the total nuclear interaction cross section (7.2

b). The centrality class can be determined from experimental observables, like the

multiplicity and energy deposition. Using the Glauber model, the impact parameter

b and some other collision quantities can be determined for each centrality class. For

example, we can measure the charged particle multiplicity dNch/dNevt in the

mid-rapidity ∣η∣ < 1. And the distribution of dσ/dNch is related to dNevt/dNch by the

relation of Nevt = σ ∫ Ldt. As shown in Figure 2.6, the centrality class is defined by

the fraction of the total cross section in a specific bin.

The quantity Npart mentioned in Figure 2.6 is a concept of the Glauber model .

In the Glauber model, the two colliding nuclei are treated as two collections of

incoming nucleons. The nucleus-nucleus collision is deemed as a superposition of

multiple nucleon-nucleon collisions. The Glauber model is often calculated by a

Monte Carlo simulation. The two nuclei are modeled by the computer as two

bunches of independent nucleons distributed as some probability distribution

function, which travel in straight lines in 3 dimensional space. A random impact

parameter b is picked up with a probability according to dσ/db = 2πb. Each N-N

collision is independent of other nucleons or any N-N collisions before, and depends

only on the distance d between two participating nucleons. If d <√σNN
inel /π, a

collision is set to happen bwtween the two nucleons. There might be some other

complicated considerations involved, such as that the nucleon space distribution is

Gaussian alike. In this way, the number of participating nucleons Npart and the

number of binary nucleon-nucleon collisions Ncoll are clearly obtained. After many

simulations, the average number ⟨Npart⟩, ⟨Ncoll⟩ and other quantities for some
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Figure 2.6: Simple example of the definition of the centrality class by the experiment

observable, namely the charged particle multiplicity in mid-rapidity Nch [123]. Also,

the impact parameter b and the number of participating nucleons Npart calculated

from the Glauber model are shown in the top of the figure.

specific impact parameter b, which in turn is related to the centrality, can be

determined.

The underlying assumption here is that the impact parameter is monotonically

related to the particle multiplicity both at the mid-rapidity and the forward-rapidity

regions, or other experimental used observables, to make a one-one mapping

between the impact parameter and the centrality class (or say, the experimental

observables). If there is no such a monotonical relation, the centrality class obtained

in the experiment is irrelevant to the impact parameter b, and can not be used to

determine Npart, Ncoll by the Glauber model. In the case of large impact parameter
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or peripheral events, we expect a small particle multiplicity in the mid-rapidity and

a larger number of spectator nucleons in the forward-rapidity. On the contrary, we

expect a large particle multipliciy in the mid-rapidity and a small number of

spectator nucleons in the forward-rapdity for the central events with small impact

parameter.

PHENIX adopts a “clock” method to determine the centrality class by the

charge collected in BBCs and the energy deposited in ZDCs. The former quantity is

determined by the participating nucleons, while the later are determined by the

number of neutrons coming from the colliding nuclei. Fiure 2.7 shows the

determination of the centrality in PHENIX by BBCs and ZDCs. The response of

ZDC is quite interesting. In most central collisions, few spectator neutrons can

survive in the collision and reach ZDCs. As the impact parameter increases, more

and more spectator neutrons are collected by ZDCs. But, for the most peripheral

collisions, though few participating neutrons are envolved in the collisions, most

spectator neutrons are still bound with the spectator protons, and are swept out by

the magnetic field. Therefore, for the most central collisions, few spectator neutrons

can hit ZDCs. The centrality can be determined by the combination of BBCs and

ZDCs. As shown in Figure 2.7, the ZDCs are sensitive in the most peripheral

collisions, and the BBCs are sensitive in the most central collisions.

2.2.1.4 Triggers. There are two sets of level-1 (LVL1) event triggers

available for Run08 d+Au data. One is the Minimum Bias trigger (MB), the other

one is the EMCal/RICH Level-1 Trigger (ERT ). The LVL1 trigger helps to remove

empty beam crossing and uninterested events, and serves an essential part of

PHENIX on-line system.

For Au+Au collisions, the Min Bias trigger requires at least two photomultiplier

hits in each BBC for and at least one neutron detected in each ZDC (which helps to
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Figure 2.7: The centrality class is determined by the response of BBCs and ZDCs in

PHENIX [123].

remove the background events from beam-gas interaction, but is accompanied by a

efficiency lost in the most peripheral collisions due to the ZDCs’ poor response in

such events.). For p+p, d+Au and Cu+Cu collisions, the Min Bias trigger requires a

coincidence between the BBCs with at least one hit in each BBC detector.

Besides the Min Bias trigger, PHENIX utilizes the ERT trigger, which is

triggered by the events with high pT photons or electrons. The EMCal and RICH

subsystems are used in this Level 1 trigger (See Section 2.2.3.1 and 2.2.4 for details

of these subsystems). In the EMCal part of the ERT trigger, an energy threshhold

is required for an overlapping tile of 4x4 EMCal towers in coincidence with the BBC

trigger. There are 4 variants, namely 4x4a, 4x4b, 4x4c with different energy

thresholds, and 2x2 with an energy thresholds on a tile of 2x2 EMCal towers. This

requirement makes sure that there is at least one high pT photon or electron hit in

EMCal. In the RICH part of the ERT trigger, a threshold on the sum of

photonelectrons in an unoverlapping tile of 4x5 PMTs in RICH is required. A 4x5
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tile can just cover the norminal size of a ring by an electron. Since the tiles are not

overlapping, to enhance the efficiency, it’s good to choose a relative low threshold.

All the thresholds in the ERT trigger can vary run by run. For Run 8 d+Au data in

this analysis, the equivalent thresholds before run 250515 are list as below: 2.8 GeV

(PbSc) and 2.1 GeV (PbGl) for 4x4a, 3.5 GeV (PbSc) and 2.8 GeV (PbGl) for

4x4b, 2.1 GeV (PbSc) and 1.4 GeV (PbGl) for 4x4c, 600 MeV (PbSc) and 400 MeV

(PbGl) for 2x2, and 3 photonelectrons for RICH. Fron run 250515, the 2x2

thresholds are raised to 800 MeV (PbSc) and 600 MeV (PbGl) according to the

summary page at

http://www.phenix.bnl.gov/WWW/trigger/pp/c-arm/Run3/run8.html.

A further Lever-2 (LVL2) trigger is used in the event assembling to enhance the

interested physics data. An overview of LVL2 algorithms are summarized in Table

2.1.

The Min-Bias trigger loses the efficiency in the most peripheral collisions,

because ZDCs can possibly not able to get a coincidence on both sides.

2.2.2 Charged Particle Tracking. The central tracking system for

charged particles consists of the Drift Chambers (DC), the Pad chambers (PC) and

the Time Expansion Chamber (TEC). Two DCs are located on the east and west

arm respectively, each covers π/2 in azimuth. There are three layers of Pad

Chambers, PC1, PC2, PC3 on the west arm, and PC1, PC3 and TEC on the east

arm respectively. DCs provide high resolution measurements of the trajectory and

momentum of the charged particles, PCs can provide 3D spacial point information

for pattern recognition, and TEC tracks the charged particles between RICH and

EMCal, identifies them by measuring dE/dX and improves the e/π separation. The

multiplicity of charged particles in the central collisions at RHIC energy level is

about dNc/dη = 700 with a spectrum peaking at 300-500 MeV for soft particles. Due
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Table 2.1: Overview of LVL2 trigger algorithm

Trigger Method

Single Electron Match RICH rings to EMCal clusters

Make EMCal energy threshold cut

Electron Pair Calculate invariant mass of electron pairs

Make invariant mass cut

Single Muon Calculate invariant mass of electron pairs

Make invariant mass cut

Muon Pair Find roads through MuID panels

High pT EMCal Find EMCal clusters

Make threshold cuts

High pT Charged Match PC and DC hits

Cut on the bend angle

Coherent Peripheral Events Look for ZDC trigger with no BBC trigger

Look for PC hits

Centrality Selection Use BBC and ZDC to estimate centrality

Make centrality cuts on selected triggers

to the partial coverage in the azimuthal angle, a large number of charged particles

enter the central tracking system without passing through DC. All the three

detectors are essential to perform both an accurate measurement and a good

pattern recognition in such a large multiplicity environment.

2.2.2.1 Drift Chamber. The Drift Chambers are cylinder shaped

multiwire chambers, as shown in Figure 2.3. It locates at a radial distance from 2 m
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to 2.4 m, and it is 2 m along the beam axis. Thus each DC can cover 90○ in

azimuthal angle and ±0.35 in pseudorapidity. DCs are outside of the central magnet

field, and the residual magnetic field at DCs is about 0.6kG. The central magnet

field is designed to be along the beam axis, therefore it only bent the charged

particles in azimuth. Accordingly, DCs have better resolution in r-φ than z. The

single wire resolution in r-φ is better than 150µm, while the single wire resolution in

z is designed to be better than 2mm only.

The volume of each DC detector on the east/west arm is confined by a cylinder

Ti frame defined the azimuthal and z limits, also by Five-mil Al-mylar window

defining the radial limits. Each frame is divided into 20 equal sectors, and each

sector extends 4.5○ in azimuth, as shown Figure 2.8.. In each sector are six types of

wire modules positioned radially, namely X1, U1, V1, X2, U2 and V2. In each

module, there are 4 anode planes and 4 cathode planes. In the anode plane, there

are other wires beside the anode wires. The anode wires are separated by the

Potential wire, and surrounded by Gate wires and Back wires. Also, there are two

Termination wires on both sides of the anode plane in each module. For X wire

cells, there are 12 anode wires in each anode plane in a module, and for U, V wire

cells, there are 4 anode wires in each plane, as shown in Figure 2.8..

The X wires are parallel to the beam pipe, and they are designed to have

exellent resolution in r-φ plane. The U, V wires are placed with a small stereo angle

(6○) respect to the X wires so that DCs are able to get the z position by those wires,

see Figure 2.8. The distance between the anode wires and the location where the

electrons/ions are caused by the passing charged particle can be determined by the

arrive time and the drift velocity in the working gas. In DC, the working gas is

mixed by 50% Argone and 50% Ethane.
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Figure 2.8: The frame of Drift Chamber (left), side view of the layout of wire

arrangement in one sector and in one V1 anode plane (middle), top view of the

wire orientation (right) [124].

The track in Drift Chamber is reconstructed by a combinatorial Hough

transform (CHT) technique. The Drift Chamber hits are mapped into a feature

space which is defined by φ and α, as shown in Figure 2.9. φ is defined by the

azimuthal angle of the crosspoint of the track trajectory and the middle radius of

DC, while α is defined as the inclination angle of the track at that crosspoint. α is

proportional to the inverse of pT such that it gives us a first estimation of the value

of pT . X1, X2 hits are both required for the track reconstruction, and U, V hits are

needed to determine z information.

2.2.2.2 Pad Chamber. After leaving the Drift Chamber, a charged

particle enters a set of separate layers of Pad Chambers . They are in fact multiwire

proportional chambers. The first layer PC1 is located betwee DC and RICH, about

2.45m away from the beam, which can determin the z coordinate at the outside of

DC and make a good crosscheck with U, V wire readout in DC. The third layer PC3

is located just before EMCal, 4.9m away from the beam. The second layer PC2 is
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Figure 2.9: Illustration of the track reconstruction in Drift Chamber using the

CHT technique. The circles near the charged particle trajectory represent the Drift

Chamber hits [125].

only installed in the wast central arm, as shown in Figure 2.3. PC2 and PC3 are

needed to remove the particles which come from secondary interaction or hadron

decay outside DC and finally enter EMCal. Also, low momentum charged particles

which fly around DC and PC1 can be ruled out by PC2 and PC3 too. And the

situation that three layer’s hits in a straight line serves a good confirmation of a

particle trajectory.

2.2.3 Photon Reconstruction.

2.2.3.1 Electromagnetic Calorimeter. The Electromagnetic

Calorimeters (EMCal or EMC) are primarily to measure the position, energy and

time-of-flight information of photons and electrons / positrons in midrapdity region.

Also, the quick response to energy deposition of EMCal is useful in triggering events

with high pT photons and electrons. The underlying physics is that the photons and

electrons interact with the medium by the electromagnetic shower, through

cascading bremstrahlung (for electrons) and pair production(for photons, note:

photonelectric effect and Compton scattering are only important when the energy of
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the incident particle is below a few MeV), while the hadrons deposit only a small

fraction of the total energy by the hadronic shower, via strong interaction, which is

more complicated. Two different detector technologies are adopted in the PHENIX

EMCal detector, one is lead scintillator calorimeters(PbSc), as shown in Figure

2.10a, the other is lead glass Cherenkov detector(PbGl), as shown in Figure 2.10b.

PbSc is a sampling calorimeter, consisting layers of lead and scintillators; while

PbGl is a homogeneous calorimeter, made of a whole lead-glass Cherenkov radiator.

Such a configuration provides a valuable cross-check between two technologies with

different characteristics. EMCal is the outmost of the PHENIX central arm, and is

5 meters away from the beam pipe. EMCal is composed of eight sectors. Six of

them are PbSc detectors, and the other two are PbGl detectors. The PbSc has great

signal linearity and timing response, and the PbGl has excellent energy resolution

and granularity.

(a) Interior view of a PbSc module.

photodiode with
preamplifier

reflective cover

LED board

lead glass matrix with
carbon fibre/epoxy

steel plates

mirror foil

photomultiplier
with housing

(b) Exploded view of a PbGl supermodule.

Figure 2.10: Diagrams of EMCal Detectors [126].
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The PbSc detector consists of 15552 individual towers. Each tower is composed

of 66 sampling cells which consists of alternating lead and scintillator layers. PMTs

are attached in the backend, which are connected by optical fibers with those cells.

A module of PbSc is composed of four individual towers, which are mechanically

hold together. Thirty six modules are attached to a backbone and held together to

form a supermodule (SM). A sector consists of eighteen supermodules. The energy

resolution of PbSc was obtained by a beam test at BNL and CERN, and the fit to a

quadratic formula is:

σE(E)
E

= 2.1%⊕ 8.1%√
E(GeV) . (2.1)

The position resolution can be described well by a simple formula

σx(E, θ) = σ0(E)⊕∆ × sin(θ) (2.2)

where

σ0(E) = 1.55⊕ 5.7√
E(GeV)(mm) (2.3)

is the position resolution for normal incidence and ∆ ∼ Lrad.

The PbGl detector is previously serviced for CERN experiment WA98. Each

PbGl sector comprises 192 supermodules in an array of 16 SM in wide and 12 SM in

height. Each supermodule consists of 24 modules in an array of 6 modules wide and

4 modules high. Each module is read out by a photomultiplier. The response of the

PbGl has been studied in test beams of AGS at BNL and SPS at CERN. The

energy resolution results are shown with the fit parameterization

σ(E)
E
= [5.9 ± 0.1]%√

E/GeV
⊕ [0.8 ± 0.1]%. (2.4)

The measured position resolution can be fitted with the parameterization

σx(E) = [8.4 ± 0.3]mm√
E/GeV

⊕ [0.2 ± 0.1]mm. (2.5)
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2.2.3.2 Muon Piston Calorimeter. The Muon Piston Calorimeter

(MPC) is a small lead-tungstate (PbWO4) based electromagnetic calorimeter with

Avalanche Photodiode (APD) readout at the south and north side of PHENIX. It

covers the rapidity in 3.1 < ∣η∣ < 3.9, and the azimuth in 2π. MPC helps PHENIX to

extend the acceptance to the forward/backward region and go further in the small x

and spin physics. MPC is compact enough to be installed in the small hole just in

front of the muon piston after which MPC is named, and strong enough to withold

the magnetic field there. Each MPC are composed of 8 modules, as shown in Figure

2.11, including 4 wedges (with 29 crystals each) and 4 bricks (with 19 crystals each).

MPC consists of 192 crystals in total at each side.

Figure 2.11: Muon Piston Clorimeter. Left: detector layout of the PbWO4 crystals;

Right: MPC is installed around the beam pipe (Photos from [122]).

2.2.4 Electron Identification. The Ring Imaging Cherenkov detector

(RICH) , shown in Figure 2.12, is the principal electron ID device in PHENIX. The

RICH detects the Cherenkov light ring produced by charged particles whose speed

is faster than the speed of light in the medium, and measures the speed of that fast

moving charged particle. If the momentum of the particle is provided, the mass of

the particle can be derived and the type of particle can be identified. The RICH
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detector at PHENIX can identify the electrons above 18 MeV/c, and the Cherenkov

threshold for charged pions is 4.65 GeV/c, which is much higher. Since the charged

pions are the lightest charged hadrons, so any particles with momentum below 4.65

GeV/c detected by the RICH are electrons uniquely. In this way, the RICH detector

can be used to veto electrons from charged hadron tracks, which is useful in the

hadronic jet analysis. The medium in the RICH detector is CO2 gas at 1 atm with

refractive index 1.000410. The yield of Cherenkov light is determined by the length

of the radiator medium, so the RICH detector is very large due to the gas vessel

volume. The RICH detector produces about 12 photons in average for a β ≈ 1
particle over a path length of 1.2 meters. To reduce the size of the radiation length,

a set of very thin mirrors are mounted onto the PMT array, just outside the central

arm η acceptance. There are 5120 PMTs in total mounted in the RICH detector.

Figure 2.12: Electron signal depositions are shown in the RICH. Cherenkov radiation

is reflected onto PMT array (left). Ring sizes are shown relative to PMT lattice

(right). Plots from [122].
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3 Data Analysis

3.1 PHENIX Data Set

Since 2000, PHENIX has collected data for each run period, see Table 3.1. In

this analysis, Run08 d+Au ERT triggered data are selected, and the number of

events is about 10 million.

Table 3.1: A summary of PHENIX data sets through 2008.

RHIC Run beam beam energy sampled ∫ Ldt
(Year) species (GeV) events

1 (2000) Au+Au 130 10 M 1 µb−1

2 (2001/2) Au+Au 200 170 M 24 µb−1

p+p 200 3.7 B 0.15 pb−1

3 (2002/3) d+Au 200 5.5 B 2.74 nb−1

p+p 200 6.6 B 0.35 pb−1

4 (2003/4) Au+Au 200 1.5 B 241 µb−1

Au+Au 62.4 58 M 9 µb−1

5 (2005) Cu+Cu 200 8.6 B 3 nb−1

Cu+Cu 62.4 400 M 0.19 nb−1

Cu+Cu 22.4 9 M 2.7 µb−1

p+p 200 85 B 3.8 pb−1

6 (2006) p+p 200 233 B 10.7 pb−1

p+p 62.4 28 B 0.1 pb−1

7 (2007) Au+Au 200 5.1 B 813 µb−1

8 (2008) d+Au 200 160 B 80 nb−1

p+p 200 115 B 5.2 pb−1
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3.2 Particle Identification

3.2.1 Choice of Particle Types. In two particle jet correlations, the

final state hadrons produced in jets are the primary focus of our studies. So the

charged hadrons detected by the drift chambers are used as the partners. The

choice of triggers is a little bit of subtle. The initial triggers are the direct photons,

especially the isolated non-decay-tagged ones, because the direct photons provide a

precise assessment of the jet momenta and zT values. However, the direct photon

measurement suffers from the poor statistical uncertainties as well as low signal /

background (direct / decay) ratio in inclusive photon samples. Then we move to

π0’s as the triggers in two particle correlations. First, pions, including π0, π±, are

the lightest hadrons, which are created abundantly in jets. The events analysed are

not rare direct photon events any more, thus, the statistical uncertainties are

improved. Second, PHENIX doesn’t have any tracking detector between the beam

and the drift chambers in its 2008 detector configuration (Later PHENIX has the

silicon vertex detector installed to improve the tracking capability, but not for

Run08). So for high pT π± particles, PHENIX has a large background which limits

the capability of π±-h± analysis in high pT regions. Meanwhile, PHENIX EMCal

detectors provide precise energy and position resolution for the photon detection.

The π0 can be reconstruct from two decay photons by the invariant mass method.

Considering this branch ratio of π0 → γ + γ decay channel is about 98.8%, the life

time of the π0 is about 8.4 × 10−17 seconds, ∼ 25.1 nm, PHENIX has the capability

to detect a large chunk of the π0’s. And the combinatoric background in the π0

detection is small (S/B > 18), see Section 3.9. Therefore, the π0 is chosen as the

trigger in our analysis.

3.2.2 Photon Identification. Clusters in the EMCal are identified as

photons with these cuts:
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• shower shape cut: χ2 < 3
• track-based charged hadron veto

• hot and dead tower exclusion

• fiducial cut: ∣ZEMC ∣ < 155 cm

The shower shape for an electromagnetic shower is different from a hadronic shower.

The EMCal detector’s response is predicted by the simulation with PISA (PHENIX

Integrated Simulation Application, which is based on GEANT3 libraries), and a

predicted EM shower shape function for i-th tower(Fi) is parameterized as:

Fi = E
pred
i

Etot

= P1(Etot, α) exp{− (ri/r0)3
P2(Etot, α)} + P3(Etot, α) exp{− (ri/r0)

P4(Etot, α)}
(3.1)

Where, Epred
i is the predicted energy of i-th tower, ri is the distance between the

center of i-th tower and corrected hit position, and r0 is the surface size of a EMCal

cell which is 5.5 cm. P1−4 are the parameterized functions of total energy Etot and

impact angle α. P1−4 are obtained in the test beam run as

P1 = 0.59 − (1.45 + 0.13 lnEtot) sin2 α

P1 = 0.27 − (0.80 + 0.32 lnEtot) sin2 α

P1 = 0.25 − (0.45 + 0.036 lnEtot) sin2 α

P1 = 0.42

(3.2)

Then the electromagnetic showers can be identified from the hadronic shower by the

shower shape profile χ2 test,

χ2 =∑
i

(Epred
i −Emeas

i )2
σ2
i

(3.3)
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where Emeas
I is the measured energy in i-th tower after the calibration, Epred

i is the

predicted energy by Equation 3.1, and σi is the variance of the predicted energy

function as

σ2
i = A ⋅Epred

i (1 +B√Etot sin
4 α)(1 − Epred

i

Etot

) + q(Etot) (3.4)

where the constant A and B are obtained by the test beam data.

Although most of the hadronic shower is removed by the shower shape cut,

there is still a considerable amount of hadron contamination. The photon candidate

clusters are distinguished from the charged particles (electron converted by photon

or remaining hadron) by associating the photon candidate clusters with charged

particle hits in Pad Chamber (PC3), which is just 5 cm away in front of EMCal.

The distance between hit positions of EMCal and PC3 is given by

rvetoemc−pc3 =
√
dx2emc−pc3 + dy

2
emc−pc3 + dz

2
emc−pc3 (3.5)

The threshold for the charged particle veto is set to 6.5 cm based on the Moliere

radius.

Any bad conditioned towers are recognized and removed by the hot/dead tower

map. A tower with hit frequency higher/lower than 5σ of the averaged hit frequency

per tower is tagged as a hot/dead tower. Any hot/dead tower with its 3x3 nearby

towers are excluded from later analysis.

A fiducial cut on the edge could help to rule out the photons which are unable

to be reconstructed correctly, if part of their energy is not deposited into the EMCal.

The efficiency of the photon identification cut is NOT studied for now, and

should be done by simulation.

3.2.3 π0 and η Identification. The π0 and η are neutral mesons which

can decay into photons. They are reconstructed by the invariant mass of photon
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pairs by

minv =√(E1 +E2)2 − (p1 + p2)2
=
√

2E1E2(1 − x1x2 + y1y2 + z1z2
l1l2

)
=√2E1E2(1 − cosψ)

(3.6)

where ψ is the opening angle between the two photons’ tracks, Ei is the energy of

photon i, pi is the momentum of photon i, xi, yi, zi are the coordinates of photon i,

li is the path length from the collision vertex which is determined by BBCs to the

hit position of photon i. The reconstructed invariant mass should be within the

mass window for π0 or η mesons. The invariant mass spectrum of the photon pairs

can be fitted by a gaussian peak of the “real” π0 and a 3rd order polynomial of fake

π0 from the combinatorial background. The mass window for π0 is 120-160MeV,

and that for η is 530-580MeV. To reduce the combinatorial background, the two

photons’ energy should be greater than 1 GeV, which helps to remove the soft

photons, the major source of the combanitoric background. High pT photons which

decay from the same π0 are likely not to separate far away and to remain in the

same sector of EMCal, while the random combinatorial matching of photon pairs

has no such trend. Accordingly, the sub-leading photon is required to be in the

same sector as the leading photon. Also, in the high pT region, most fake π0s are

due to the random combination of a high pT (must be high energy) photon which

comes from a real π0 and a low energy soft photon. They can possibly be

distinguished by the concept of asymmetry:

asymmetry = ∣E1 −E2

E1 +E2

∣. (3.7)

The asymmetry cut on the photon pairs can alleviate the random combinatorial π0

match problem. The threshold is determined by both the energy of the photons and
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the centrality of the event. The background from the combinatorial match for a π0

is pretty small in simulations. The contribution from a false match for η should be

removed by side band analysis, see Section 3.9.

3.2.4 Charged Hadrons Identification. The reconstructed tracks in

the drift chamber are identified as charged hadron tracks based on the following

criteria:

• Track quality

• PC3 and EMCal matching

• RICH ring veto

• Drift chamber z-edge cut

• EMCal energy cut

In a high multiplicity environment, fake tracks could be reconstructed by unrelated

hits in the tracking system, or, the real tracks constructed could lack hitting point

in some detectors. Accordingly, the quality control in the charged track

reconstruction is a important part of the analysis. In PHENIX tracking system, six

bits, shown below, are used to describe the quality of the reconstructed tracks.

◇ bit 0 (1): X1 used

◇ bit 1 (2): X2 used

◇ bit 2 (4): UV found

◇ bit 3 (8): UV unique

◇ bit 4 (16): PC1 found
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◇ bit 5 (32): PC1 unique

The tracks with quality bit of 63 or 31 are selected in this analysis . Quality 63

means hits in X1, X2 and UV wires in DC and also a unique hit in the PC1, while

quality 31 doesn’t require PC1 hit to be unique.

The DC/PC1 hit matching with quality selection is not a guarantee to erase

the “ghost” particles which are just random matching between them. Also the

background from off-vertex tracks, such as the tracks from conversion, deflection

and decay, should be excluded from our analysis since the current charged track

analysis assumes that all tracks are from the collision vertex. Due to these

consideration, the outer PC layers are included into the charged particle selection

cuts. Since PC2 is only installed on west arm, only PC3 is incorporated into the

analysis at this moment. Along with the magnetic field consideration, the tracks

reconstructed from DC and PC1 hit are projected to PC3, and the projection point

should match a nearby PC3 hit. The matching window is determined by a Gaussian

fit of the distance between the projection point and the PC3 hit position, and the

PC3 matching cut is appropriately selected as 3σ of the normalized Gaussian peak,

or
√
σ2
∆φ + σ2

∆z < 3. Actually it is a double Gaussian fit because the real match and

random combinatorics have their own Gaussian peaks. The EMCal matching is

pretty similar to the PC3 matching mentioned above.

Electrons are rejected by vetoing from the RICH ring. Charged hadrons with

pT less than 4.65 GeV/c are unable to radiate Cherenkov light in the RICH detector,

and a zero coincidence with RICH radiation rings, a.k.a. n0 ≤ 0, serves as a cut for

charged tracks with pT below this value. If a charged particle’s pT is greater than

this threshold, it could still radiate Cherenkov rings based on its mass. The pions

radiate first at or just above this threshold, then other heavier charged particles

radiate with even higher pT . If a charged particle is above its threshold for radiating
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in the RICH, an e/p ratio cut in EMCal is applied. In this cut, the ratio between

the energy deposited in EMCal by this particle and its own momentum is calculated

and should be below a specific value.

It’s possible that a charged particle hits the edge region of DC and crosses out

of its side boundary. To prevent this case which would bring unexpected errors into

the charged particle efficiency estimation, a fiducial cut (or a z-edge cut of DC) is

applied as shown below

◇ West arm: −0.54 < φDC < 0.92
◇ East arm: 2.25 < φDC < 3.65
◇ Zed < 75cm
◇ θ0 < 0

wher φDC and Zed are the φ and z coordinates of the hit position on DC

respectively, and θ0 is the polar angle of the reconstructed track from the collision

vertex which is determined by the BBC detectors.

3.3 d+Au Centrality Categorization

After the observation of collective flow in p+Pb and d+Au collisions (see

Section 1.4), and π0, η and jet RdA (defined in Equation 1.43) anomalies in

peripheral d+Au collisions (see Section 1.3.2), it is time to review how we

characterize centrality and geometry parameters in such collisions . It is crucial in

all RdA measurements.

In A+A collisions, the centrality is defined by the particle multiplicity and

summed energy deposited in some pseudorapidity range. Some quantities associated

the centrality concept can be defined for each event, such as Ncoll and Npart. Ncoll is

the number of binary collisions in one event, it is also called Nbinary in some
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literatures. Npart is the number of participant (wounded) nucleons in one event. In a

more central collision event, Ncoll and Npart are larger.

However, in p+A collisions, the relative particle multiplicity fluctuation for

some Ncoll value is larger than A+A collisions due to the relatively small Ncoll value

range. Also, the centrality definition might be correlated with the observable, and

introduce some bias. This is another reason that we need to be extra careful for

centrality determination.

PHENIX has published its method of determination of centralities in d+Au

collisions [127]. The described method is the one adopted in this analysis. PHENIX

d+Au centrality is defined as the percentile based on the summed charge

multiplicity measured at BBC in the Au going direction (−3.9 < η < −3.0). The
Glauber model MC simulation is used to map the initial geometry parameters to

the observed charge multiplicity. The transverse position of nucleons in a deuteron

is decided by a Hulthén wave function

ψd(rpn) = ( αβ(α + β)
2π(α − β)2)

1/2
e−αrpn − e−βrpn

rpn
(3.8)

with α = 0.228 fm−1 and β = 1.18 fm−1. The square of this wave function

determines the probability distribution in a deuteron. For the gold nucleus, a

Woods-Saxon density function is used,

ρ(r) = ρ0

1 + e r−R
a

(3.9)

with radius R = 6.38 fm, and diffuse parameter a = 0.54 fm. On an event-by-event

basis, all nucleons are randomly placed. If the distance between two nucleons is

smaller than σNN/π (here, σNN is the nucleon-nucleon inelastic cross section, σNN =

42 mb), a nucleon-nucleon collision is set to occur. In this event, Npart, Ncoll and all

geometric information, such as spacial position and overlapping region, are collected.
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In an assumption that the charge multiplicity is proportional to the number of

binary collisions, and the fluctuation follows the negative binomial distribution,

NBD(x;µ,κ) = (1 + µ
κ
) (κ + x − 1)!
x!(κ − 1)! ( µ

µ + κ)
x

. (3.10)

and the charge multiplicity distribution / probability is determined as

P (x) = Nbinary(max)∑
n=1

Gl(n) ×NBD(x;nµ,nκ), (3.11)

here x is the BBC charge multiplicity, Gl(n) is the number of binary collisions from

the Glauber model, normalized as per event quantity. µ and κ is obtained by fitting

to the experimental data with x greater than 20. Data in the small x region are

expected to deviate from this formula due to MB trigger requirement (one hit in d

going BBC, then quite a few in Au going BBC). The results are µ = 3.03 and κ =

0.46. If we set the charge multiplicity proportional to the number of participant

instead of the number of binary collisions, the results are almost the same, and the

difference is included into systematic uncertainties. A fit shows that the MB trigger

fires 88 ± 4% of 2.19 barn inelastic d+Au cross section determined in the Glauber

model.

Other quantities in the initial state, such as geometric parameters, can be

determined. For example, the eccentricity ε2 and higher moments, which represents

the asymmetry of the overlapping collision region, are determined as

εn =
√⟨r2 cos(nφ)⟩2 + ⟨r2 sin(nφ)⟩2⟨r2⟩ , (3.12)

here, the average ⟨⋅⟩ means an average over the spacial distribution of participating

nucleons from the Glauber model. The spacial distribution is taken as point-like,

disk-like, Gaussian and disk-NBD[127], and the difference between combinations are

included into systematic uncertainties. The spacial overlap area is calculated as

S = 4π√⟨x2⟩⟨y2⟩ − ⟨xy⟩2 (3.13)
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and the mean radius

R̄ = 1√
1/⟨x2⟩ + 1/⟨y2⟩ . (3.14)

However, there is a correlation between a trigger requirement and the charge

multiplicity in BBC. Considering the nucleon-nucleon 42 mb inelastic cross section

in three parts:

1. nondiffractive collisions, 28 mb

2. single diffractive collisions, 10 mb

3. double diffractive collisions, 4 mb

The particle products in diffractive events are mostly distributed around the beam,

hence have small amount in the BBC, or say, a small charged distribution in the

BBC. For this sake, the BBC trigger is more efficient to fire nondiffractive events,

which has a large probability to emit a π0 in midrapidity and detected by a central

arm detector. Therefore, there is an autocorrelation between the charge multiplicity

and a trigger requirement because our triggers tend to fire nondiffractive events.

When we measure π0 yields, we have to consider events that don’t fire the trigger.

Our MB trigger are selecting events with bias, it not simply ”minimum bias”. This

effect is universal in p+p and d+Au, and affects all yield measurements, such as RdA

measurements. A correction for yields is needed. You might ask why we can’t

simply use a clock trigger 8 since there is no detector issue? Because the clock

trigger can’t remove the beam-gas interaction background. Also, PHENIX analysis

has assumptions that the events occur close to the detector center, only the MB

trigger can ensure this requirement.

8 A clock trigger fires randomly on some time. A true randomness means no correlation. Of
course, a clock trigger is correlated with time or a clock, but there is no detector issue, no physics
observable correlation except it is correlated with time!
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This bias has another consequence in terms of centrality determination in

d+Au. An event with physics interests, such as a nondiffractive collision or an event

with π0 in midrapidity, has more charge multiplicity than others, and is more likely

classified as large centrality. In peripheral collisions, such a centrality migration

causes yields to go down. While in central collisions, it cause yields to go up. Both

need corrections.

To correct the bias-factor, PHENIX first determines the charge multiplicity

increase in p+p events from MB and clock trigger data. The additional charge

corrects µ and κ in NBD both by a factor of 1.55±0.23. Also PHENIX assumes that

1. in an event with N binary collisions, the one with a hard scattering is biased

to higher charge multiplicity and higher trigger efficiency

2. the increase in p+p is applicable to the one binary hard scattering in d+Au

3. the other N -1 binary collisions are unaffected

Then they calculate the invariant yields with and without this bias, and obtain the

bias-factor correction. This factor could be applied in all yields measurements, such

as RdA

RdAu = c dNdAu/dy⟨Ncoll⟩dNpp/dy , (3.15)

here, c is this bias-factor correction.

3.4 pT and Centrality Selection

● Trigger binning: 5-7, 7-9, 9-12, 12-15 GeV/c

● Partner binning: 0.6-1, 1-2, 2-3, 3-5, 5-7 GeV/c

● Centrality class: 0-20%, 20-40%, 40-60%, 60-88%
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3.5 Event and Particle Selections for Final Results

The data set is Run8dAu200ERT data set.

● Event cut:

– ∣Zvtx∣ < 30 cm

● Photon cuts:

– shower shape cut χ2 < 3
– PbSc/PbSc warnmap cut with mask 0x3fe1ce70

– my own 3x3 hot tower cut

– edge tower cut

– fiducial cut: ∣Zemc∣ < 155 cm

– firing ERTtrigger

– veto based on the distance to the closest charged track

● π0 cuts:

– two decay photons in the same arm

– brother decay photon’s energy > 0.5 GeV

– 0.12 < π0 InvMass < 0.16
● Charged hadron cuts:

– quality cuts: 31 or 63

– RICH n0 cut: n0 ≤ 0 when pT < 5.0
– PC3 matching cuts: ∣pc3sdz∣ <3 && ∣pc3sdphi∣ <3 at all pT
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– no EMC matching cut

– no e/p cut

● Mixing requirements:

– centrality within 5%

– vertex within 5 cm

– mixing multiplier ≥ 100
3.6 Two Particle Correlation

For heavy ion collisions, even for p+p or d+A collisions, the large amount of

soft particles makes the direct jet reconstruction difficult. For the existing jet

reconstruction methods, they are forced to use particles with high pT values (as

large as several GeV/c) to avoid the soft particles background. If we include these

particles, the jet would be too broad and include the contamination from

“underlying events”. The situation is even complicated further by the limited

acceptance of PHENIX detector, because the central arm can detect the particles

with ∣η∣ < 0.35 which leads to some of the jet constituents being leaked outside of the

detector acceptance.

The two-particle azimuthal correlation method is an alternative tool to

investigate the jet properties, as illustrated in Figure 3.1. A trigger particle is

selected, usually with some conditions such as the high pT value which indicates the

presence of a jet, then we get the pair distributions from other particles in the same

event, which are called partner particles. It could be the distribution in the

azimuthal plane, such as pair angle ∆φ distribution, or it could be distributions in a

larger space such as ∆φ and ∆η 2-dimensional distributions. Using the azimuthal

angle is based on the fact that in Leading-Order QCD, the outgoing partons in hard
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Figure 3.1: Two particle azimuthal correlation illustration

scattering events are back-to-back in the azimuthal angle. Any deviation from this

should be a result from the Next-to-Leading-Order effect, soft gluon radiation,

multiple scattering or the response from the medium. With carefully chosen

variables, the contribution from different effects could be distinguished by the

two-particle azimuthal correlation method. The result from p+A collisions serves as

a baseline for comparing with A+A, and could make a clear view of the separate

contributions of the deviations coming from hot dense medium and cold nuclear

medium. In our two-particle azimuthal correlation method, a high pT (⩾ 5GeV/c)

trigger, either a photon or a π0 is chosen as a trigger. Within this particular pT

range for the trigger, if the trigger is a direct photon, it is likely either coming

directly from the hard scattering process for the prompt photon, or part of the jet,

which is the fragmentation products of a hard scattering parton, for a decay photon

or a π0. Actually, most of decay photons come from the decay mode of π0s as

π0 → γ + γ. On the other hand, the charged hadrons are chosen as the associated
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partners. The pT threshold for the associated particles helps to remove some of the

soft particle background which comes from the underlying events. Due to the nature

of the hard scattering events, the trigger and the associated particles tends to

swarm together or to fly apart almost back-to-back. This could be clearly visualized

by looking at the distribution of the azimuthal angle differences between the trigger

and the associated particles, as shown in Figure 3.2. The two peaks in ∆φ

distribution of the two-particle correlation are corresponding to the near- and

away-side jets to which the associated partner hadron belongs. The so called near-

and away-side are relative to the trigger’s direction.

P
T
Y

(A
.U

.)

∆φ (rad)

Two-Source Model of Correlation Function

Jet Yields
Underlying Evts Bgs

0 π
2

π

Figure 3.2: Cartoon plot of two-particle correlation distribution in ∆φ in heavy ion

collisions. The two peaks are due to the near- and away-side jets. The flat pedestal

comes from the underlying events background.

Actually, the rapidity/pseudorapidity (y/η) correlation distribution is also

sometimes measured, as shown in Figure 1.16, 1.17 in Section 1.4. The broadening
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in ∆η in the near-side correlation in Au+Au collision is refered as “ridge”. The

suppresion at ∆φ = π is refered as “head”, while the enhancement at ∆φ = π ± 1.1 is

refered as “shoulder”. These structures were thought as phenomena of the medium

response of the jet. Later people realize that they are caused by higher order

harmonics in the flow, which come from the initial state fluctuations.

3.6.1 Notations for Mathematical Framework. To make a clear

introduction, this subsection is going to show the notations used in the derivation of

the mathematical framework for the two-source model of jet correlation physics. All

of them are following PHENIX Analysis Notes 646 [128]. To make things easy, we

would like to look at the symbols and units at first.

[N] = counts (3.16)

[N] = raw counts (3.17)

[n] = counts/event (3.18)

[n] = raw counts/event (3.19)

[ dn
d∆φ

] = counts/event/rad (3.20)

[ dn
d∆φ

] = raw counts/event/rad. (3.21)

The capital letter denotes total counts, while the letter in small case denotes

per-event quantity. The blackboard bold letter means measured quantity, while the

regular letter means the true quantity. Then the efficiencies are defined as

n
A = ǫAnA (3.22)

n
B = ǫBnB (3.23)

n
AB
real = ǫAB

realn
AB
real (3.24)

n
AB
mixed = ǫAB

mixedn
AB
mixed. (3.25)
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The superscript A means the trigger(photon or pion), B means the associated

partner(charged hadron), and AB means a two-particle pair formed by the trigger

and the partner. The subscription real means that it is a quantity from real events,

and mixed means that it comes from mixed events. The single particle efficiencies

could be obtained by comparing the raw counts and the published PHENIX data

instead of full Monte Carlo simulations.

3.6.2 Acceptance Correction and Event Mixing. The ∆φ

distribution of the two-particle correlation quantities should be corrected because of

the uneven acceptance efficiency on different ∆φ value, which results from the

limited PHENIX azimuthal acceptance, shown in Figure 2.2, as well as the working

condition of the detector subsystems of PHENIX and the application of various cuts

in event and particle selection. To address this issue, a common procedure is to mix

up different events which belong in the same group with similar characteristics, such

as the centrality. Since the two particles in the pair are from different events, they

are not correlated by physics. Even though, there might be some unknown residual

correlation existing from the detectors, such as correlation with the reaction plane

due to the reaction plane acceptance. The shape of the ∆φ distribution from the

mixed events only arises from the acceptance efficiency. Following this idea, if we

divide the real event distribution of Npair
real by the mixed event distribution of Npair

mixed,

we are able to cancel out and correct the uneven ∆φ acceptance efficiency, which is

largely due to the limited PHENIX azimuthal acceptance (See [128] [129] and

Appendix A for details). Therefore, the correlation function

C (∆φ) ≡ Npair
real (∆φ)/Npair

mixed(∆φ) is a good choice in the two-particle jet correlation

analysis. The correlation function C(∆φ) could also be normalized by the
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integrated yields and redefined as,

C(∆φ) ≡ dnAB
real

d∆φ

dnAB
mixed

d∆φ

∫ dnAB
mixed

d∆φ
d∆φ

∫ dnAB
real

d∆φ
d∆φ

. (3.26)

The acceptance correcton is defined as

dnAB
real

d∆φ
=

dnAB
real

d∆φ

Acc(∆φ) (3.27)

which is used to get the real number of the trigger-partner pairs. And the reason

why we need the mixed events lies here. By using the sum rule from [129],

∫ C(∆φ)d∆φ = ǫAB
mixed

ǫAB
real

∫ d∆φ, (3.28)

the φ acceptance correction is derived to be (The detailed derivation is in Appendix

A)

Acc(∆φ) = dnAB
mixed

d∆φ

ǫAB
mixed

nAB
mixed

∫ d∆φ (3.29)

where ǫAB is essential for the evaluation of acceptance correction. To determine its

value, we look at the multiplicity for mixed events

n
AB
mixed = κnA

n
B (3.30)

nAB
mixed = nAnB (3.31)

where κ is the pair efficiency due to the cuts in our analysis, then, we get

ǫAB
mixed = κǫAǫB. (3.32)

In this way, the acceptance correction could be achieved by the event mixing and

the evaluation of those efficiencies.

3.6.3 Two-Source Model and Combinatorial Background. As in

the direct jet reconstruction, the soft background products still play a role in the

two-particle correlation analysis. Apart from the jet correlation, the random
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combination of uncorrelated particles, at least uncorrelated through the hard

scattering (or say, the partner hadrons come from the underlying events), build up

the pedestal background. The correlation function could be decomposed into two

parts, one from the pair yields of two-particle jet correlation (so called jet function),

the other from the combinatorial background from the underlying events. This

decomposition could be expressed by

dNAB
real(∆φ)
d∆φ

= dNAB
comb(∆φ)
d∆φ

+ dNAB
jet (∆φ)
d∆φ

(3.33)

or, using per event quantities,

dnAB
real(∆φ)
d∆φ

= dnAB
comb(∆φ)
d∆φ

+ dnAB
jet (∆φ)
d∆φ

. (3.34)

The correlation function C(∆φ) could have other variants, such as the one

normalized by the number of events or even by the number of triggers. Per event

quantities and per-trigger quantities are two common way to evaluate the azimuthal

correlations. In this analysis, the different types of triggers have different

efficiencies. By using the per-trigger quantities, we are about to remove such

difference across the different trigger types because dividing the pair number related

quantities by the number of triggers can cancel the trigger efficiency. This

advantage gets more prominent, especially when the direct photon result is obtained

by subtracting the decay photon result (which is derived from π0 meson result) from

the inclusive one. Therefore we define the per-trigger yield (PTY),

1

nA

dnAB

d∆φ
= 1

nA
[dnAB

jet

d∆φ
+ dnAB

comb

d∆φ
] (3.35)

using the measurable quantities

1

nA

dnAB
jet

d∆φ
= ǫA

nA

⎡⎢⎢⎢⎢⎢⎣
dnAB

real

d∆φ

Acc(∆φ) − dn
AB
comb

d∆φ

⎤⎥⎥⎥⎥⎥⎦
. (3.36)
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The only remaining part is the combinatorial background term. It is evaluated by

various methods, such as the zero yields at minimum (ZYAM) method, the absolute

subtraction (ABS) method and the mean-seeds mean-partner (MSMP) method.

The idea of ZYAM is that we assume the pair yield of the jet correlation

approaches to zero at some minimum point ∆φmin, i.e.

dnAB
comb

d∆φ
∣
∆φmin

= 0. (3.37)

The minimum value for PTY corresponds to the combinatorial background from

dAu collision which has no elliptical flow, since it is only a constant value without

any v2 term. The jet correlation could be fitted by two Gaussian peak after

subtraction of the combinatorial backgrounds.

The effectiveness of ZYAM could be impaired by the situation lacking of

statistics, such as the region ∆φ near π/2 in high pT bins either for the trigger or

the associated partners.

In the ABS methods, we assume that the multiplicity of combinatoric pairs in

the real event could be represented by the one in mixed events after a

centrality-multiplicity correlation correction. The mixed event method counts the

pair multiplicity in mixed events

n
AB
comb = n

AB
mixed ⋅ ξ (3.38)

divided by ǫAB
mixed, we get a similar form,

nAB
comb = nAB

mixed ⋅ ξ (3.39)

or the differential form,

dnAB
comb(∆φ)
d∆φ

= dnAB
mixed(∆φ)
d∆φ

⋅ ξ. (3.40)
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The mean-seeds mean-partner method (MSMP) could be derived by using Equation

3.30. It measures the single particle multiplicity and the pair cut loss in mixed

events.

n
AB
comb = n

A
n
Bκ ⋅ ξ. (3.41)

In d+Au collision, the combinatorial background is a constant over all ∆φ, so

dnAB
comb(∆φ)
d∆φ

= nAnBκ ⋅ ξ

∫ d∆φ (3.42)

consequently,

dnAB
comb(∆φ)
d∆φ

= nA

ǫA
nB

ǫB
1

∫ d∆φ ⋅ ξ. (3.43)

The introducing of ξ roots in the fact that the central events contribute more

pairs than the peripheral events, or say the multiplicity is uneven with the

centrality. In the process of event mixing, the events within the same centrality

bin(see Line 200 of combOnetrigbgTrack.C) are randomly selected for mixing. The

event on the up edge of the centrality bin is under-weighted for the multiplicity by

event mixing procedure. “The correction modifies the background level by ≈ 0.2% in

the most central and ≈ 25% in the most peripheral Au+Au collisions” according to

[130]. To determine the value of ξ, we start from the integrated two-particle pair

yield in mixed events

∫ dNAB
mixed(∆φ)
d∆φ

d∆φ = NAB
mixed = N evt

mixed n
AnB, (3.44)

then based on the two-source model Equation 3.33, we could decompose the

two-particle pair yield into the jet correlation part and the combinatorial

background

dNAB
real(∆φ)
d∆φ

= dNAB
jet (∆φ)
d∆φ

+N evt
real

dnAB
comb(∆φ)
d∆φ

(3.45)

using Equation 3.40

dNAB
real(∆φ)
d∆φ

= dNAB
jet (∆φ)
d∆φ

+N evt
real ⋅ ξ ⋅

dnAB
mixed(∆φ)
d∆φ

(3.46)
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integrated by ∆φ

NAB
real = NAB

jet +N evt
real ⋅ ξ ⋅ n

AB
mixed (3.47)

by using Equation 3.31

NAB
real = NAB

jet +N
evt
real ⋅ ξ ⋅ n

AnB. (3.48)

Also, as we discussed above, the combinatorial background comes from the residual

correlation from the finite centrality bin, we could write

NAB
real = NAB

jet +N
evt
real⟨nA(c) nB(c)⟩ (3.49)

Here the second term stands for the residual correlation in the mixed events, arising

from the finite centrality bin correlation. Therefore the angle brace means the

average value over the centrality bin, and nA, nB are the functions of the centrality

c. Comparing the two equations above, we derive [102]

ξ = ⟨nA(c) nB(c)⟩
nA nB

. (3.50)

3.7 Quality Assurance

These runs are excluded from the final results

● EMC: 247787 248149 248173 248174 249252 249255 249257 249258 249259

246483 246484 246492 246544 247055 247169 247247 247815 248149 249115

249252 249255 249257 249258 249259 249405 249496 249839 249843 250005

250016 250875 251063 251416 251486 251502 251836 251840 251971 252102

252117 252201 252259 252773 253440 253523 253629 [131] 249252 249255

249256 249257 249258 249259 [132]

● DC: 249865 249866 248380 [133]
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● Acceptance Correction: No runs. We get dN
dφ

for each run from the TTree data

saved in disk. Then we do a chi-square test on each runs by comparing with

the overall one. During the chi-square test, we stripe off all the bins which

might be zero in any runs, then the degree of freedom is the same for all runs’

test. The chi-square value is shown in Figure 3.3. Some runs might have high

χ2 value. However, the χ2 value for the acceptance correction remains

consistent with the overall one. The worst run is 249866. The efficiency and

acceptance correction are shown in Figure 3.4 3.5 by comparing with the

overall ones. The acceptance correction remains consistent with the overall, so

we decide to keep those runs.

3.8 Dead and Hot Towers

In order to identify the dead and hot towers, we register the hit number of each

tower in different energy range, starting from 1 GeV to 20 GeV in a step of 1 GeV.

Then we apply an iteration algorithm for similar towers. The towers are group in

two different ways, one is by sector, the other one is by the type (PbSc or PbGl). In

taxi, we use the one from 8 sectors with energey 1 - 2 GeV. We calculate the mean

and variance of the towers in one group. Since the hot towers are extremely “hot”,

which makes the mean deviated towards a high hit number, and the standard

deviation to be a large number too. We throw away the towers whose hit number is

out of 3σ range, then do this calculate again, until the remaining towers, the mean

and the variance converged in the iterations, see Figure 3.6. The results of the dead

/ hot tower could be verified in Figure 3.7.
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Figure 3.3: The chi-square value for each run’s DC efficiency. The X axis is the

run number (a run number denotes a section of data collected in a period where all

detector configurations are kept almost the same) in the data, and the Y axis is the

χ2 value of each run. The zero bins are stripped off, they have the same degree of

freedom.

3.9 Combinatorics for Reconstructed π0

The combinatoric background in π0 reconstruction is studied by fitting the data

with a Gaussian peak plus a linear combinatoric background, see Figure 3.8. The

fitted coefficients are list in Table 3.2. The meaning of the coefficients are: C0 ⇒
Gaussian peak weight, C1 ⇒ Gaussian peak location, C2 ⇒ Gaussian peak width,

C3 ⇒ intercept in the linear function, C4 ⇒ slope in the linear function. The signal

backgroud ratio is determined from the fit, and listed in Table 3.2.
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Figure 3.4: The DC efficiency ratio between a bad run 249866 and the overall. The

big plot shows the zoomed-in view, and the small plot shows the overview.

Table 3.2: S/B Ratio and Fitting Coefficients of π0 Combinatorics

Trigger(GeV/c) S/B C0 C1 C2 C3 C4

5 - 7 18.2 18190.5 0.139955 0.00909 422.606 1236.81

7 - 9 19.1 2236.56 0.140285 0.00931 56.3296 98.6971

9 - 12 19.8 498.05 0.1407 0.00973 9.36018 40.4933

12 - 15 21.5 65.92 0.141575 0.01040 1.20428 4.76524

The residual correlation between the mis-reconstructed fake π0 and the charged

hadrons is studied by the side band analysis [134]. The choice of the side bands are:

● low band: 0.065 GeV < InvMass < 0.115 GeV
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Figure 3.5: The acceptance correction ratio between a bad run 249866 and the overall.

The big plot shows the overview, and the small plot shows the zoomed-in view.

● high band: 0.165 GeV < InvMass < 0.200 GeV

The low band and high band correlations are shown in the jet functions in Figure

3.9, 3.10. The residual correlation of the reconstructed fake π0’s is obtained by

combining the high and low band jet function weighted by the number of triggers.

Then the true π0’s jet function is calculated by the measured π0-h and fake π0-h

correlations, see Equation 3.52.

S ⋅ Y π0

+B ⋅ Y fake

S +B
= Y meas (3.51)

Y π0 = (1 + 1

S/B ) ⋅ Y meas
−

1

S/B ⋅ Y fake (3.52)

= Y meas
+

1

S/B (Y meas
− Y fake). (3.53)
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Figure 3.6: The EMCal tower hit number distribution in different sectors with the

energy in 1 - 2 GeV. The black, red and green lines represent the mean, 3σ, and 5σ

respectively.
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Figure 3.7: The dead/hot tower maps for all EMCal sectors. The X axis is the column

index in a sector called “iy”, and the Y axis is the row index within a sector called

“iz”. Sector 0 - 5 are PbSc, Sector 6 - 7 are PbGl.
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Figure 3.8: The π0 combinatoric background is obtained by combining all sectors’

data. The red line is the fitting function, which is a Gaussian π0 peak + linear

background. The green line is the linear function for background.

Here, Y means the jet function. Currently, we don’t have the reconstructed fake

π0-h correlation results for p+p collisions, so we include this as systematic error into

the final results. It will be updated once we have such data ready.

The size of the correction itself is small, see Figure 3.11. We decide use 100% of

this needed correction as the uncertainty, and include it in all the jet function plots,

IdA plots, jet width plots, RI plots(See Section 4.4). Considering the similar shape

of the π0 combinatorics correction and the type B systematics (see Section 3.12 for
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Figure 3.9: The residual correlations are shown in the jet functions between the

mis-constructed fake π0 in low band mass region and the charged tracks in 0-20%

centrality.

the definitions of Type A, B, C uncertainties) from uncorrelated efficiency

uncertainty and the ZYAM, the fitting won’t change much by including the π0

combinatorics systematics. The systematic errors of the fitted width are below 1%

except a few pT bins. In the fitting process, the uncertainty of the width is

determined as:

1. fit with all corrections and statistical uncertanty, type B part of efficiency

uncertainty, ZYAM uncertainty

2. fit with all the uncertainties mentioned above, plus the one from π0

combinatorics
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Figure 3.10: The residual correlations are shown in the jet functions between the

mis-constructed fake π0 in high band mass region and the charged tracks in 0-20%

centrality.

3. the deviation of the fitted width ⇒ err1

4. fit with the systematics only from π0 combinatorics

5. the fitted parameter error ⇒ err2

6. err1 is from the different relative uncertainty distribution between π0

combinatorics and other uncertainty

7. err2 is from the size of the π0 combinatorics uncertainty
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8. err1 and err2 should be uncorrelated to each other, so the width uncertainty

from π0 combinatorics is
√
err12 + err22
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Figure 3.11: The uncertainty associated with the jet functions. The first is the

statistical uncertainties, the second is the uncertainties from Type B efficiency

uncertainty and ZYAM. The last is from the residual π0-h combinatorics correlation,

for which we assign the uncertainty as 100% of this correction.

3.10 Charged Hadron Efficiency

There is no tracking detector before the Drift Chambers, so the detected

charged hadrons contains sizeable backgrounds. The backgrounds come from the

conversion electrons (γ + γ → e+ + e−), secondary decay particles whose vertices are

far from the event vertex (mainly form ) and weak decays of short lived particles (

mainly K0
S, Λ and Λ̄).
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In practice, there are two options to determine the charged hadron efficiencies.

One is by Monte Carlo simulation (Geant/PISA), the other one is by comparison

between the measured spectra and the published ones. The later one is called the

bootstrap method in the PHENIX analysis notes [135–137]. The results of the

bootstrap method have been compared with the Monte Carlo method, and the two

approaches agree well with each other within the systematic error [135, 137]. See

Figure 3.12 from [135], and the figures showned in [137]. Considering the agreement

shown by the above mentioned previous studies and the computation costs of the

simulation method, we decide to determine the charged hadron efficiencies by the

bootstrap method.

Figure 3.12: Comparison between the MC and bootstrap methods for Run 6 p+p

collisions. The agreement is within the systematic uncertainties of the two methods

[135].

3.10.1 d+Au Collisions. The charged hadron yields for Minimum Bias

events in d+Au collisions at
√
S = 200 GeV have been published by PHENIX [68].

The measured spectra are determined by the histograms in the mixed events, where

the charged hadrons are from the Minimum Bias events. We assume the efficiency
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in ERT triggered events and the Minimum Bias events are the same, so the

efficiencies determined by these Minimum Bias events are still applicable in our

analysis. One subtle thing here is the occupancy effect, whose origin is the

multiplicity. The occupancy effect is determined to be less than 10% in Au+Au

events with centralities above 40% at 200 GeV, see [137]. We decide to add 10% into

our systematic error of the efficiencies for 0-20%, 20-40% d+Au events. Both the

measured and published spectra for the charged hadrons in the d+Au Minimum

Bias events at
√
s = 200 GeV are shown in the left panel of Figure 3.13, 3.14, 3.15,

3.16, and the efficiencies are shown in the right panel of them. The error bar in the

fine binning contains both errors from the experiment data and the published data.

The error bar in the coarse binning is divide into two parts, one is the statistical

errors from the experiment data, the other is the systematic error from the

published data. There are two types of systematics in [68]. One is correlated in

different pT bins (Type B), the other one is correlated and constant in different pT

bins, which is constant 8.7% in all pT bins (Type C). The 2nd type of systematics

are definitely irreducible when combining multiple pT bins. We treat the 1st type of

systematics(Type B) as uncorrelated uncertainty when combining the pT bins. The

calculated result (4.1%) in 4.5-5.5 GeV/c from the data in [68] website’s

dAuDataTables.pdf is larger than the one listed in [68] (3.4%). The method we are

using here should be more conservative than the actual one. We compare our

efficiencies with the parametrization result from [136], they agree within the

systematics. The result is shown in Figure 3.17. When phT > 3 GeV/c, our bootstrap

efficiencies start to get higher than [136], though still within the systematics errors.

Because the most systematics come from the 2nd type (Type C), which is constant,

we believe that we are getting mis-constructed tracks when phT > 3 GeV/c instead of

getting fluctuations from the uncertainties (statistical + systematic). Since we
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believe that the junk tracks are not part of jets, and remain constant in all ∆φ, they

should be removed automatically by ZYAM procedure and not appear in the jet

functions and all the measured quantities related to the jet functions. Therefore, we

think it is appropriate to use the efficiency determined in 2 - 3 GeV/c for higher

partner pT bins (and we still use the larger systematic uncertainties from those

higher partner pT bins), which are shown as red points in Figure 3.17. There are

two components in the systematic errors on the d+Au efficiencies. One is pT

independent, which is 8.7% in all bins. The other one is pT dependent. In all the

following plots, the 8.7% systematics is not shown.
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Figure 3.13: The charged hadron efficiency in 0-20% centrality d+Au Collisions. The

fine binning is for [68], the coarse binning is for this analysis. This centrality class

contains extra 10% systematics due to the occupancy effect. The red ones are the

efficiencies we use in the bins where phT > 3.0 GeV/c.

3.10.2 p+p Collisions. The charged hadron cross section for Minimum

Bias events in p+p collisions at
√
sNN = 200 GeV have been published by PHENIX

[138]. The yields is calculated from the published cross section by Equation 3.54
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Figure 3.14: The charged hadron efficiency in 20-40% centrality d+Au Collisions.

The fine binning is for [68], the coarse binning is for this analysis. This centrality

class contains extra 10% systematics due to the occupancy effect. The red ones are

the efficiencies we use in the bins where phT > 3.0 GeV/c.
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Figure 3.15: The charged hadron efficiency in 40-60% centrality d+Au Collisions.

The fine binning is for [68], the coarse binning is for this analysis.The red ones are

the efficiencies we use in the bins where phT > 3.0 GeV/c.

from [139].

E
d3σUnbiased

X

d3p
= σBBC

NTotal
BBC

⋅
1

2π

1

pT
⋅CBBC Bias

p+p (pT , y) ⋅ d2NTotal Biased
X

dpTdy
. (3.54)

Then the efficiency is determined by the experiment data and this calcuated yields.

The p+p efficiency is shown in Figure 3.18. There are pT independent errors in the
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Figure 3.16: The charged hadron efficiency in 60-88% centrality d+Au Collisions.

The fine binning is for [68], the coarse binning is for this analysis.The red ones are

the efficiencies we use in the bins where phT > 3.0 GeV/c.
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Figure 3.17: The charged hadron efficiencies (0-88%) in d+Au collisions are compared
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systematics errors of p+p efficiencies. One comes for BBC efficiency, which is about

9.6%, the other is the trigger bias, which is 3%. These two errors are not shown in

all the plots below. The remaining errors are pT dependent.

0 1 2 3 4 5 6 7 8

410

510

610

710

810

910 Pub

Exp

T
dp

 dN 
evtN
1 ≡Yields 

 (GeV)
T

p
1 2 3 4 5 6 7

E
ff
ic

ie
n

c
y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

pp Charged Hadron Efficiency

Figure 3.18: The charged hadron efficiency in pp collisions. The fine binning is for

[138], the coarse binning is for this analysis.

3.11 Rapidity Acceptance Correction

Besides the φ acceptance correction, we need the η acceptance correction, see

[89]. The function of ∆η correction is shown in Figure 3.19. The awayside jet yields

correction is simply 2. And the nearside jet yields correction relies on the width of

the nearside jet . It is determined by fitting the jet function with two Gaussian plus

a pedestal background. The nearside Gaussian peak widths are shown in Figure

3.20, 3.21, 3.22, 3.23. Also, we show the awayside Gaussian peak widths in Figure

3.24, 3.25, 3.26, 3.27. These plots show a subtle modification in d+Au collisions.

The nearside η acceptance correction values are shown in Figure 3.28, 3.29, 3.30,

3.31. The ∆η correction relies on the nearside width, which is not sensitive to the

small π0 combinatorics uncertainty. The thing that matters is the ratio between the

nearside width of d+Au and p+p. In order to evaluate it, we move d+Au and
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p+p’s width away from each other to make the ratio larger. We try two sets of

parameters. In the first parameter settings, we make the difference between d+Au

and p+p’s width twice larger than the fitted values. The changes of R∆η are all well

below 1%. In the other parameter settings, we move d+Au and p+p’s width away

from each other by the size of their own uncertainties. The uncertainty of R∆η

values from this setting in 0-20% d+Au collisions are shown in Table 3.3. This

uncertainty is projected into IdA and RI plots’ systematics uncertainty as

uncorrelated uncertainties (uncorrelated with other uncertainties, such as type B

efficiency uncertainty, ZYAM, π0 combinatorics).
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Figure 3.19: The function of the near-side ∆η correction, which is close to a linear

function.
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Figure 3.20: Nearside width for 0-20% centrality used for R∆η from gaussian fits. The p+p phT values are shifted to the

right by 0.1.
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Figure 3.21: Nearside width for 20-40% centrality used for R∆η from gaussian fits. The p+p phT values are shifted to the

right by 0.1.
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Figure 3.22: Nearside width for 40-60% centrality used for R∆η from gaussian fits. The p+p phT values are shifted to the

right by 0.1.
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Figure 3.23: Nearside width for 60-88% centrality used for R∆η from gaussian fits. The p+p phT values are shifted to the

right by 0.1.
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Figure 3.24: Awayside width for 0-20% centrality used for R∆η from gaussian fits. The p+p phT values are shifted to the

right by 0.1.



122

>h

T
<p

1 2 3 4 5 6

A
σ

0.1

0.2

0.3

0.4

0.5

0.6

0.7  < 7 
π

T
dAu, 5 < p

 < 7 π

T
pp, 5 < p

 < 9 
π

T
dAu, 7 < p

 < 9 π

T
pp, 7 < p

 < 12 
π

T
dAu, 9 < p

 < 12 
π

T
pp, 9 < p

 < 15 
π

T
dAu, 12 < p

 < 15 
π

T
pp, 12 < p

Figure 3.25: Awayside width for 20-40% centrality used for R∆η from gaussian fits. The p+p phT values are shifted to the

right by 0.1.



123

>h

T
<p

1 2 3 4 5 6

A
σ

0.2

0.3

0.4

0.5

0.6

 < 7 
π

T
dAu, 5 < p

 < 7 π

T
pp, 5 < p

 < 9 
π

T
dAu, 7 < p

 < 9 π

T
pp, 7 < p

 < 12 
π

T
dAu, 9 < p

 < 12 
π

T
pp, 9 < p

 < 15 
π

T
dAu, 12 < p

 < 15 
π

T
pp, 12 < p

Figure 3.26: Awayside width for 40-60% centrality used for R∆η from gaussian fits. The p+p phT values are shifted to the

right by 0.1.
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Figure 3.27: Awayside width for 60-88% centrality used for R∆η from gaussian fits. The p+p phT values are shifted to the

right by 0.1.
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Figure 3.28: Nearside Rapidity Acceptance Correction for 0 - 20% Centrality. The

p+p phT values are shifted to the right by 0.1.

Table 3.3: The uncertainty of R∆η corrections in 0-20% d+Au collisions

% 0.6 < phT < 1 1< phT <2 2< phT <3 3< phT <5 5< phT <7
5 < pπT < 7 3.86 1.99 1.56 1.11 1.24

7 < pπT < 9 5.82 2.91 1.91 1.64 1.71

9 < pπT < 12 10.6 4.14 2.96 2.15 3.29

12 < pπT < 15 13 7.96 6.34 4 2.76
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Figure 3.29: Nearside Rapidity Acceptance Correction for 20 - 40% Centrality. The

p+p phT values are shifted to the right by 0.1.

3.12 Uncertainties in Measurements

Before discussion of uncertainty treatment in this analysis, let’s define some

terms used widely in PHENIX [140] [141]. We can classify the systematic

uncertainties into three classes, Type A, B, and C . Type A systematic uncertainty

means that the uncertainty is uncorrelated from point to point. Type B means the

uncertainty is correlated from point to point, and Type C means the uncertainty

can be represented by an overall normalization factor.

In this analysis, the uncertainties associated with each measured variable are

different, especially for RI (Section 4.4), where most of the systematics are

cancelled out, completely or mostly. In RI, any uncertainty from efficiency is

cancelled entirely. Some of other systematics uncertainties are correlated with each

other, which dramatically reduce the size of systematic uncertainty. The
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Figure 3.30: Nearside Rapidity Acceptance Correction for 40 - 60% Centrality. The

p+p phT values are shifted to the right by 0.1.

uncertainties deserve a separate section in any measurement, inside or outside

physics. Here is a list of uncertainties considered in this analysis.

● Statistical uncertainty

● Type B uncertainties from the efficiency

● Type C uncertainties from the efficiency

● Uncertainty from the mis-constructed π0 combinatorics

● Uncertainty from ZYAM

● Uncertainty from the bleeding correction

● Uncertainty from R∆η



128

h

T
p

1 2 3 4 5 6

η
∆

R

1.2

1.4

1.6

1.8

2

2.2 dAu 5-7 

pp 5-7 

dAu 7-9 

pp 7-9 

dAu 9-12 
pp 9-12 

dAu 12-15 
pp 12-15 

Figure 3.31: Nearside Rapidity Acceptance Correction for 60 - 88% Centrality. The

p+p phT values are shifted to the right by 0.1.

● Uncertainty from v3 contribution

The statistical uncertainty is treated by ROOT, one possible concern is that we

haven’t update the statistical errors in the histograms when we perform the ZYAM.

The necessary of the procedure is not pursued, and won’t be discussed here. One

uncertainty may be categorized into different types in terms of different quantities

analysed. For example, all the uncertainties associated with efficiency are all type C

uncertainties for the correlation function with a certain pT bin (such as 5-7 GeV ⊗
1-2 GeV). However, they may be categorized into type B and type C uncertainties

when we are analyzing IdA or RI. Since the main quantities that we are trying to

get physics information from are IdA and RI values, so the later discussion is based

on the point view of these quantities.
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The type C uncertainties (both in terms of IdA RI and the correlation/jet

functions) from the efficiency come from three parts. The first comes from the

d+Au yields published by [68], there is a 8.7% uncertainties in all pT [68]. The

second comes from the p+p cross-section published by [138], there is 9.6%

uncertainties from BBC efficiency affecting all pT [138]. The third comes from the

trigger bias determination when converting p+p cross-section to yields [139]. The

size of it is 3%. Since these uncertainties are constant in any pT , zT , Npart, and not

correlated with any other uncertainty, so we decide leave them alone. The are not

shown in any plots except in IdA plots, where I put a shaded box to indicate the size

of these uncertainties.

There are other pT dependent and correlated uncertainties in the efficiency

determination, or say type B, in terms of IdA and ri (Attention, they are type C

uncertainties in terms of the correlation function for one pT bin). They are treated

as independent to each other when we determine the average efficiency for one pT

bin in this analysis, which is more conservative than the actual one (since they are

correlated somehow, at least partially, due to the same method utilized for those

fine pT bins in the previous efficiency measurements), see Section 3.10.1. And this

uncertainty has the largest fraction in the combined systematic uncertainty. In RI,

it is completely cancelled out. The main reason we choose RI as the measurement

variable is the small systematic uncertainty. The other reason is that it is sensitive

to the physics we are trying to measure. The final results of RI are shown in

Section 4.4. This uncertainty is shown in the systematics graphs in all jet function

plots, the near/away side yields plots, the near-away side width plots, the

near/away side IdA plots, and the RI plots.

The mis-constructed π0 has its correlation in ∆φ. They should be corrected in

the jet function, then in the away/near-side yields, IdA, and RI. However, we don’t
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have the p+p data available right now. So we decide not to correct it for both

d+Au and p+p, and assign the size of this uncertainty as 100% of the relative size

of π0 combinatorics correction in d+Au. This uncertainty is shown in the

systematics graphs in all jet function plots, the near/away side yields plots (if I put

them in this notes), the near-away side width plots, the near/away side IdA plots,

and the RI plots. The corrections are usually uncorrelated with others in most of

the quantities I list, however, they are correlated in RI. They are both subtracted

in near and away side peaks, which make the effect less in RI. The relative size of

this systematics in d+Au and p+p is calculated by Equation 3.55.

∆RIπ
RI

= ∣Y A
π

Y A
− Y N

π

Y N
∣ (3.55)

where, Y is the integrated yields in either near or away side in d+Au, and Yπ is the

correction from π0 combinatorics in near or away side in d+Au. And we notice that

Yπ

Y
is small in both side, and almost a constant, which makes the uncertainty even

smaller. This is one more small reason we want to choose RI because of the partial

carelessness in the π0 combinatorics uncertainty and the b0 uncertainty.

The uncertainty of the ZYAM level is determined by the size of the b0

parameter error from fit during ZYAM procedure. It is uncorrelated with any other

systematics in terms of the jet function, the near/away side yields, IdA. However,

the effect of ZYAM uncertainty on near and away-side yields are partially cancelled,

see Equation 3.56

∆RIb0
RI

=
¿ÁÁÁÀ⎛⎝

∆Y A,pp
b0

Y A,pp
− ∆Y N,pp

b0

Y N,pp

⎞⎠
2 + ⎛⎝

∆Y A,dAu
b0

Y A,dAu
− ∆Y N,dAu

b0

Y N,dAu

⎞⎠
2

. (3.56)

The reason we combine p+p and d+Au as the root of sum of squares because we

believe the uncertainty of b0 in p+p and d+Au fitting are uncorrelated with each
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other. And the yields in integrated in 0 - π/2 and π/2 - π, so we may rewrite it as¿ÁÁÀ( 1

Y A,pp
− 1

Y N,pp
)2 (∆b0pp ⋅ π

2
)2 + ( 1

Y A,dAu
−

1

Y N,dAu
)2 (∆b0dAu

⋅ π

2
)2. (3.57)

This uncertainty is shown in the systematics graphs in all yields plot (if I put them

in this notes), IdA plots and RI plots.

The uncertainty of the bleeding effect is estimated as 50% the size of the

correction itself because of the small correction, see Section 4.3. We assign this as

100% of the correction in my previous analysis note. However, since we’ve correct it,

we could go with a little bit of less conservative. In the lowest partner bins,

especially 5-7 x 0.6-1 GeV/c one, the correction is relative large, which might need a

careful treatment. In general, the shape and width of d+Au, p+p jets are similar,

so the effect of the bleeding correction is similar for the two yields. Therefore, the

bleeding correction in d+Au and p+p partially cancels each other. The bleeding

correction in near-side and away-side are also correlated. The loss in one side is

exactly the gain in the other side, which makes the contribution somewhat larger

than independent variables. So, all four corrections to the yields (near/away side ⊗

d+Au/pp) are not independent variables. Right now, we use 50% size of the

correction as the uncertainty. In principle, we could use the uncertainties of the

fitted width to propagate into this correction, and use this to evaluate the

uncertainties, and possibly reduce the systematics. This uncertainty is shown in the

systematics graphs in all yields plot (if I put them in this notes), IdA plots and RI

plots.

The uncertainty of R∆η is evaluated by the function of R∆η(σN), shown in

Figure 3.19. We vary the nearside width by the error from the fitting, and obtain

the uncertainty of R∆η, and propagate it into the nearside yields, nearside IdA and

RI. The contribution of p+p and d+Au uncertainties into nearside IdA and RI is
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treated as uncorrelated uncertainties, and calculated as square root of sum of

squares. This uncertainty is shown in the systematics graphs in all yields plot (if I

put them in this notes), IdA plots and RI plots.

The v3 could cause an enhancement of awayside nearside ratio. v3 should be

generally small, however, [97], [98] don’t rule out a possibility of large v3. So for this

systematics, we choose v3 values as large as v2 ones, such as v3 = 0.05 in 0.6 - 1

GeV/c, and v3 = 0.07 in 5 - 7 GeV/c, and propagate it into yields, IdA, RI. The

uncertainties is about 2% for the awayside nearside ratio. In high partner pT ’s, it

remains about 2% if we assume a rising v3 as v2. So we assign a 2% type C

uncertainty for v3 contribution. This uncertainty is shown in the systematics graphs

in all yields plot (if I put them in this notes), IdA plots and RI plots.

Table 3.4 shows the uncertainties and how they contribute to the final results.
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Table 3.4: Uncertainties and Their Contributions. Here, C means corrected and

the systematics is included. Y means the systematics is included. P means the

systematics is included and treated carefully because of partial cancelness. 0 means

the systematics is cancelled out. We believe that all Type B uncertainties are

uncorrelated with each other, so we use the square root of the quadratic sum of

all Type B uncertainties as the final over-all Type B uncertainty.

Uncertainty Yields IdA RI

Type B Eff C C 0

π0 Combinatorics Y Y P

ZYAM C C CP

Bleeding C C CP

R∆η C C C

v3 N Y YP
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4 Results

4.1 Correlation Functions and Jet Functions

The correlation function, as we have discussed in Section 3.6, is defined as

C(∆φ) ≡ dnAB
real

d∆φ

dnAB
mixed

d∆φ

∫ dnAB
mixed

d∆φ
d∆φ

∫ dnAB
real

d∆φ
d∆φ

. (4.1)

The correlation functions are φ acceptance corrected by dividing the mixed

background. In simple words, the correlation function is an acceptance-corrected

dNAB/d∆φ π0-h± pair distribution.

One thing to note, for the highest partner pt bin (5-7 GeV/c), the mixing

method fails due to extremely low statistics. The worst case is 12-15 ⊗ 5-7 GeV/c in

60-88% centrality, there are only 22 entries in my mixing histogram. The amount of

computation in the taxi might be prohibitive considering the quick falling of the

partner spectrum in Minimum Bias events. So we decide to use the one from one

lower partner pt bin (3-5 GeV/c), and triple the error bars. The difference between

the two partner pt bins are checked in the lowest trigger pt bin, where the statistics

are better. The two acceptance corrections are consistent with each other, well

within the statistical errors, see Figure 4.1. One thing could break this validity, the

distribution of the triggers. We check the number of triggers, which have large

statistics, so we believe this won’t cause the break down of this substitution.

The per trigger correlation functions for 0-5%, 0-20%, 20-40%, 40-60%, 60-88%

centrality bins are shown in Figure 4.3, 4.4, 4.5, 4.6, 4.7 respectively.

We could separate the dNAB/d∆φ pair distributions, a.k.a. the correlation

functions, into two parts, one from the jets, the other one from the combinatorial

backgrounds. This two source model could be described by the equation below

dnAB
real(∆φ)
d∆φ

= dnAB
jet (∆φ)
d∆φ

+ dnAB
comb(∆φ)
d∆φ

. (4.2)



135

 (rad)φ∆
0 0.5 1 1.5 2 2.5 3

φ
∆

/d
m

ix

A
B

 d
n

× 
m

ix

A
B

1
/n

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 3-5 GeV/c×0-20%, 5-7 

 5-7 GeV/c×0-20%, 5-7 

Figure 4.1: The acceptance correction of 5-7 ⊗ 3-5 GeV/c and 5-7 ⊗ 5-7 GeV/c in

0-20% centrality. The X axis is ∆φ, and the Y axis is 1/nAB
mix × dnAB

mix/d∆φ. They are

consistent with each other. This should validate our substitution of 5-7 GeV/c mixing

partners with 3-5 GeV/c ones.

We could obtain the jet function by removing the combinatoric backgrounds from

the correlation function. The ZYAM method, which is described in Section 3.6, is

used to remove the background pedestal. Since the π0-h correlation functions are

very clean in the central region, we simply pick up the lowest bin content from the

histogram as the ZYAM level. We also tried fitting the data with a function

containing both background pedestal and near-/away-side Gaussian peaks. Both

methods agree with each other. The systematic error from the ZYAM is determined

by the error of the fitted background parameter.

The jet function reveals the structure of jets, and the possible jet /

fragmentation modifications in heavy ion collisions with the presence of nuclear
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medium. In our d+Au data, we observe that in central events the away side jet has

a clear suppression for high pT partners, and a delicate enhancement in low pT

partners. A zoomed-in plots for the jet functions are shown in Figure 4.2 to show

the small effects we are describing. This feature is similar to the data in Au+Au

collisions which is due to the energy loss in the opaque quark gluon plasma, but in a

much smaller scale. We will discuss this later in Chapter 5. And the near side jet

has a small suppression in high pT partners, which might comes from a bias effect.

If there is some energy loss mechanism, no matter it is from cold or hot nuclear

medium, the triggered events have a bias that the trigger survived with some

probability while the other near side high pT partners suffer from this energy loss.
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Figure 4.2: Two examples of d+Au and p+p jet functions for 0 - 20% Centrality. It

shows some delicate enhancements and suppressions in central d+Au collisions. The

suppression happens in the high partner pT plots on the right side. The enhancement

happens in the low partner pT plots on the left side. And this enhancement is spread

into a wider range.
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The jet functions for 0-5%, 0-20%, 20-40%, 40-60%, 60-88% centrality bins are

shown in Figure 4.8, 4.9, 4.10, 4.11, 4.12 respectively.
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Figure 4.3: d+Au and p+p Correlation Functions for 0 - 5% Centrality. The systematic error is shown by the box markers,

which includes efficiency, π0 combinatorics. Both are type C systematics in terms of ∆φ. The efficiency systematics have

the same relative errors, and the ZYAM systematics have the same absolute errors.
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Figure 4.4: d+Au and p+p Correlation Functions for 0 - 20% Centrality. The systematic error is shown by the box markers,

which includes efficiency, π0 combinatorics. Both are Type C systematics in terms of ∆φ. The efficiency systematics have

the same relative errors, and the ZYAM systematics have the same absolute errors.
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Figure 4.5: d+Au and p+p Correlation Functions for 20 - 40% Centrality. The systematic error is shown by the box

markers, which includes efficiency, π0 combinatorics. Both are Type C systematics in terms of ∆φ. The efficiency

systematics have the same relative errors, and the ZYAM systematics have the same absolute errors.
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Figure 4.6: d+Au and p+p Correlation Functions for 40 - 60% Centrality. The systematic error is shown by the box

markers, which includes efficiency, π0 combinatorics. Both are Type C systematics in terms of ∆φ. The efficiency

systematics have the same relative errors, and the ZYAM systematics have the same absolute errors.
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Figure 4.7: d+Au and p+p Correlation Functions for 60 - 88% Centrality. The systematic error is shown by the box

markers, which includes efficiency, π0 combinatorics. Both are Type C systematics in terms of ∆φ. The efficiency

systematics have the same relative errors, and the ZYAM systematics have the same absolute errors.
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Figure 4.8: d+Au and p+p jet functions for 0 - 5% centrality. The systematic error is shown by the box markers, which

includes efficiency, π0 combinatorics and ZYAM.
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Figure 4.9: d+Au and p+p jet functions for 0 - 20% centrality. The systematic error is shown by the box markers, which

includes efficiency, π0 combinatorics and ZYAM.



145
φ

∆
/dh

π
d
N

π
1
/N

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

PI0: 5-7 x 0.6-1 GeV/c

dAu

pp

/NDF=0.3504432χdAu fit 

/NDF=3.4016932χpp fit 

PI0: 5-7 x 0.6-1 GeV/c

φ
∆

/dh
π

d
N

π
1
/N

0

0.1

0.2

0.3

0.4

0.5
PI0: 7-9 x 0.6-1 GeV/c

dAu

pp

/NDF=0.7809682χdAu fit 

/NDF=1.4795662χpp fit 

PI0: 7-9 x 0.6-1 GeV/c

φ
∆

/dh
π

d
N

π
1
/N

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
PI0: 9-12 x 0.6-1 GeV/c

dAu

pp

/NDF=0.4944002χdAu fit 

/NDF=0.6105162χpp fit 

PI0: 9-12 x 0.6-1 GeV/c

φ∆

0 0.5 1 1.5 2 2.5 3

φ
∆

/dh
π

d
N

π
1

/N

0

0.2

0.4

0.6

0.8

1

1.2 PI0: 12-15 x 0.6-1 GeV/c

dAu

pp

/NDF=0.9442432χdAu fit 

/NDF=1.2705742χpp fit 

PI0: 12-15 x 0.6-1 GeV/c

φ
∆

/dh
π

d
N

π
1
/N

0

0.1

0.2

0.3

0.4

0.5

0.6 PI0: 5-7 x 1-2 GeV/c

dAu

pp

/NDF=1.7481122χdAu fit 

/NDF=4.9989622χpp fit 

PI0: 5-7 x 1-2 GeV/c

φ
∆

/dh
π

d
N

π
1
/N

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9 PI0: 7-9 x 1-2 GeV/c

dAu

pp

/NDF=1.2483692χdAu fit 

/NDF=2.8860252χpp fit 

PI0: 7-9 x 1-2 GeV/c

φ
∆

/dh
π

d
N

π
1
/N

0

0.2

0.4

0.6

0.8

1

1.2
PI0: 9-12 x 1-2 GeV/c

dAu

pp

/NDF=1.1862392χdAu fit 

/NDF=2.3146072χpp fit 

PI0: 9-12 x 1-2 GeV/c

φ∆

0 0.5 1 1.5 2 2.5 3

φ
∆

/dh
π

d
N

π
1

/N

0

0.5

1

1.5

2
PI0: 12-15 x 1-2 GeV/c

dAu

pp

/NDF=1.0501782χdAu fit 

/NDF=1.7143112χpp fit 

PI0: 12-15 x 1-2 GeV/c

φ
∆

/dh
π

d
N

π
1
/N

0

0.05

0.1

0.15

0.2

0.25

PI0: 5-7 x 2-3 GeV/c

dAu

pp

/NDF=1.8489842χdAu fit 

/NDF=4.5965902χpp fit 

PI0: 5-7 x 2-3 GeV/c

φ
∆

/dh
π

d
N

π
1
/N

0

0.1

0.2

0.3

0.4

0.5 PI0: 7-9 x 2-3 GeV/c

dAu

pp

/NDF=1.5355912χdAu fit 

/NDF=1.8336642χpp fit 

PI0: 7-9 x 2-3 GeV/c

φ
∆

/dh
π

d
N

π
1
/N

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8 PI0: 9-12 x 2-3 GeV/c

dAu

pp

/NDF=1.1577222χdAu fit 

/NDF=2.2266332χpp fit 

PI0: 9-12 x 2-3 GeV/c

φ∆

0 0.5 1 1.5 2 2.5 3

φ
∆

/dh
π

d
N

π
1

/N

0

0.2

0.4

0.6

0.8

1

1.2

1.4
PI0: 12-15 x 2-3 GeV/c

dAu

pp

/NDF=1.8868572χdAu fit 

/NDF=0.7491332χpp fit 

PI0: 12-15 x 2-3 GeV/c

φ
∆

/dh
π

d
N

π
1
/N

0

0.05

0.1

0.15

0.2

PI0: 5-7 x 3-5 GeV/c

dAu

pp

/NDF=2.4359332χdAu fit 

/NDF=4.4946312χpp fit 

PI0: 5-7 x 3-5 GeV/c

φ
∆

/dh
π

d
N

π
1
/N

0

0.1

0.2

0.3

0.4

PI0: 7-9 x 3-5 GeV/c

dAu

pp

/NDF=1.6971662χdAu fit 

/NDF=3.4812842χpp fit 

PI0: 7-9 x 3-5 GeV/c

φ
∆

/dh
π

d
N

π
1
/N

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PI0: 9-12 x 3-5 GeV/c

dAu

pp

/NDF=3.1392802χdAu fit 

/NDF=0.8014972χpp fit 

PI0: 9-12 x 3-5 GeV/c

φ∆

0 0.5 1 1.5 2 2.5 3

φ
∆

/dh
π

d
N

π
1

/N

0

0.2

0.4

0.6

0.8

1

1.2

1.4

PI0: 12-15 x 3-5 GeV/c

dAu

pp

/NDF=0.8983992χdAu fit 

/NDF=0.2680012χpp fit 

PI0: 12-15 x 3-5 GeV/c

φ
∆

/dh
π

d
N

π
1
/N

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
PI0: 5-7 x 5-7 GeV/c

dAu

pp

/NDF=1.5282402χdAu fit 

/NDF=3.2545092χpp fit 

PI0: 5-7 x 5-7 GeV/c

φ
∆

/dh
π

d
N

π
1
/N

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
PI0: 7-9 x 5-7 GeV/c

dAu

pp

/NDF=2.2318212χdAu fit 

/NDF=0.9905162χpp fit 

PI0: 7-9 x 5-7 GeV/c

φ
∆

/dh
π

d
N

π
1
/N

0

0.05

0.1

0.15

0.2

0.25

0.3
PI0: 9-12 x 5-7 GeV/c

dAu

pp

/NDF=1.1199382χdAu fit 

/NDF=0.4383702χpp fit 

PI0: 9-12 x 5-7 GeV/c

φ∆

0 0.5 1 1.5 2 2.5 3

φ
∆

/dh
π

d
N

π
1

/N

0

0.1

0.2

0.3

0.4

0.5

0.6

PI0: 12-15 x 5-7 GeV/c

dAu

pp

/NDF=0.3070742χdAu fit 

/NDF=0.1609962χpp fit 

PI0: 12-15 x 5-7 GeV/c

Figure 4.10: d+Au and p+p jet functions for 20 - 40% centrality. The systematic error is shown by the box markers,

which includes efficiency, π0 combinatorics and ZYAM.
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Figure 4.11: d+Au and p+p jet functions for 40 - 60% centrality. The systematic error is shown by the box markers,

which includes efficiency, π0 combinatorics and ZYAM.
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Figure 4.12: d+Au and p+p jet functions for 60 - 88% centrality. The systematic error is shown by the box markers,

which includes efficiency, π0 combinatorics and ZYAM.



148

4.2 Jet Widths

In Section 3.11, we have obtained the near and away-side jet width by fitting

the jet function with a function representing the two source model. The results are

shown in Figure 3.20 - 3.27. This method depends on the validity of the two source

model. In order to avoid such issues, we use the root of mean square (RMS )

method to evaluate the widths of the near and away-side jets. The near-side jet

width are shown in Figure 4.13, 4.14, 4.15, 4.16, and the away-side jet width are

shown in Figure 4.17, 4.18, 4.19, 4.20. As we can see, the most uncertainties come

from the statistical fluctuations.
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Figure 4.13: Nearside width for 0-20% centrality from RMS calculation. The p+p phT values are shifted to the right by

0.1. The systematic uncertainties are represented by the boxes.
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Figure 4.14: Nearside width for 20-40% centrality from RMS calculation. The p+p phT values are shifted to the right by

0.1. The systematic uncertainties are represented by the boxes.
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Figure 4.15: Nearside width for 40-60% centrality from RMS calculation. The p+p phT values are shifted to the right by

0.1. The systematic uncertainties are represented by the boxes.
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Figure 4.16: Nearside width for 60-88% centrality from RMS calculation. The p+p phT values are shifted to the right by

0.1. The systematic uncertainties are represented by the boxes.
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Figure 4.17: Awayside width for 0-20% centrality from RMS calculation. The p+p phT values are shifted to the right by

0.1. The systematic uncertainties are represented by the boxes.
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Figure 4.18: Awayside width for 20-40% centrality from RMS calculation. The p+p phT values are shifted to the right by

0.1. The systematic uncertainties are represented by the boxes.
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Figure 4.19: Awayside width for 40-60% centrality from RMS calculation. The p+p phT values are shifted to the right by

0.1. The systematic uncertainties are represented by the boxes.
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Figure 4.20: Awayside width for 60-88% centrality from RMS calculation. The p+p phT values are shifted to the right by

0.1. The systematic uncertainties are represented by the boxes.
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4.3 Near and Away Side IdA

The near and away side per trigger yields are obtained by integrating the two

peaks and the bleeding effect correction, the rapidity acceptance correction ( see

Sub-Section 3.11 ). The idea of the bleeding effect is that the tail of the

near/away-side Gaussian peaks could extend to the other side. It is corrected by

subtracting the residual yields from the other side’s fitted Gaussian peak and

adding up the tail from the same side Gaussian peak. Since we are correcting the

tails of the Gaussian peaks, we decide to use π/2 as the integration range.

YN =
π/2

∫
0

JF(∆φ)d∆φ − π/2

∫
0

GausA(∆φ)d∆φ + π

∫
π/2

GausN(∆φ)d∆φ

YA =
π

∫
π/2

JF(∆φ)d∆φ − π

∫
π/2

GausN(∆φ)d∆φ +
π/2

∫
0

GausA(∆φ)d∆φ.
The first term is from the histograms, and the later two terms are calculated from

the fitted Gaussian function. The uncertainty from the bleeding effect is set as 50%

of this correction itself. The size of the bleeding effect correction in RI is shown in

Table 4.1, which is very small considering the much larger yields and its effect on

both sides and both d+Au, p+p yields.

The effect of the nuclear matters in d+Au collisions could be quantified by IdA,

the ratio of per trigger yields between d+Au and p+p collisions, see Equation 1.44.

The deviation from unity denotes the departure from a vacuum QCD process.

The near side IdA plots in different centralities are shown in Figure 4.21, 4.22,

4.23, 4.24, and the awayside IdA are shown in Figure 4.25, 4.26, 4.27, 4.28. The X

axis here is zT , which is defined as

zT ≜ p
partner
T

p
trigger
T

. (4.3)
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Table 4.1: The size of the bleeding effect correction on the awayside in 0-20% d+Au

collisions (The unit of pT is GeV/c)

% 0.6 < phT < 1 1< phT <2 2< phT <3 3< phT <5 5< phT <7
5 < pπT < 7 2.54 0.783 0.161 0.0103 2.87e-4

7 < pπT < 9 0.97 0.22 5.78e-3 2.62e-4 1.77e-05

9 < pπT < 12 0.25 0.025 7.17e-4 2.14e-4 4.43e-07

12 < pπT < 15 1.4 0.0137 0.0207 6.93e-06 1.99e-09

zT is a proxy of z in the fragmentation function. The systematic errors, shown as

box in the plots, are determined by propagating the systematic errors from the

d+Au, p+p efficiencies and the ZYAM background. The ZYAM systematics are

relatively low from the correlation functions shown in Section 4.1.

The 5-7⊗5-7 GeV/c (an abbreviation of 5-7 GeV/c trigger pT and 5-7 GeV/c

partner pT bin) data points in IdA plots are close to unity, which might come from a

possible kinematic bias. When the partner’s pT is close the trigger’s pT , it gets close

to the jet’s pT . It takes away most of the jet energy, and there is less probability

find other particle productions in the jet. Therefore, there is little room for a jet

modifications. Besides this kinematic bias, another reason might comes from a

trigger bias when the energy loss in a nuclear medium exists. A partner with pT

similar to the trigger might suggest that the partner undergoes a minimum energy

loss, which is essentially an “anti” surface bias.

In principle, the IdA plots should quantitatively display the modifications we’ve

seen in the jet functions. However, the large systematic uncertainties associated in

IdA determination prevent us to get a definite conclusion. We see some tantalizing
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Figure 4.21: Nearside IdA-zT Plot in d+Au with 0 - 20% Centrality.

signal here, but not in a conclusive way. Therefore, we propose a new quantity RI

to cancel out the major sources of systematic uncertainties, see Table 3.4.

4.4 Double Ratio RI

The systematic uncertainty is large in the IdA plots. The small modification

effect in d+Au collisions is hard to extract from those plots. In order to cancel out

most of the systematics, we define a double ratio RI

RI ≜ Y dAu
away /Y dAu

near

Y
pp
away /Y pp

near

(4.4)

where, Y is the per trigger yields integrated from the jet function. RI cancels out

the systematics from the efficiency completely (which is the major source of

systematic uncertainties), and the relatively smaller one from ZYAM remains. The

systematic uncertainties from ZYAM are plotted in two different ways: the first is
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Figure 4.22: Nearside IdA-zT Plot in d+Au with 20 - 40% Centrality.

using ErrorHigh and ErrorLow calculated from YieldsHigh and YieldsLow, the

other one is by propagating the errors from ZYAM into RI. The formula for d+Au

away- / near-side yields ratio is

y = a + cδ
b + dδ = ab 1 +

c
a
δ

1 + d
b
δ

∼ a
b
(1 + c

a
δ)(1 − d

b
δ)

∼ a
b
[1 + ( c

a
− d
b
)δ] .

The one for RI should be

σZYAM

RI
= RI ⋅

¿ÁÁÀ((RA
dAu

Y A
dAu

−

RN
dAu

Y N
dAu

) ∗ δZYAM
dAu )

2

+ ((RA
pp

Y A
pp

−

RN
pp

Y N
pp

) ∗ δZYAM
pp )2 (4.5)

where, Y means the per trigger yields, R means the integral range. The one from

error propagation is a littler bit larger, so we use this one in our plots for

conservative reasons. The RI vs zT plots are shown in Figure 4.29, 4.30, 4.31, 4.32.
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Figure 4.23: Nearside IdA-zT Plot in d+Au with 40 - 60% Centrality.

The 5-7⊗5-7 GeV/c data points show some rising in RI plots, which might come

from a possible kinematic bias, see discussions in Section 4.3.

The plots reveal subtle suppression in high zT and enhancement in low zT

regions in central d+Au collisions. These RI plots shows the feature described in

the jet functions in a qualitative way. The suppression in high zT and enhancement

in low zT are about 2σ, which is about 95% probability for the presence of deviation

from p+p collisions.
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Figure 4.24: Nearside IdA-zT Plot in d+Au with 60 - 88% Centrality.
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Figure 4.25: Awayside IdA-zT Plot in d+Au with 0 - 20% Centrality.
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Figure 4.26: Awayside IdA-zT Plot in d+Au with 20 - 40% Centrality.
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Figure 4.27: Awayside IdA-zT Plot in d+Au with 40 - 60% Centrality.
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Figure 4.28: Awayside IdA-zT Plot in d+Au with 60 - 88% Centrality.
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Figure 4.29: RI vs zT Plot in d+Au with 0 - 20% Centrality.
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Figure 4.30: RI vs zT Plot in d+Au with 20 - 40% Centrality.
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Figure 4.31: RI vs zT Plot in d+Au with 40 - 60% Centrality.
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Figure 4.32: RI vs zT Plot in d+Au with 60 - 88% Centrality.
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5 Discussions

5.1 Introduction to Discussion
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Figure 5.1: Away-side IdA in peripheral d+Au collisions from isolated γ-h± analysis.

The black data point with zT above one comes from 5-7⊗5-7 GeV/c bin, where the

average ⟨zpartnerT ⟩ > ⟨ztriggerT ⟩, and the jet information is diluted by other contributions.

Originally the research conducted for this thesis included the use of isolated

direct photons as triggers. In this measurement, single direct photons are identified

through a requirement of being relatively isolated from other particles in angular

cones of chosen sizes around the candidate. Direct photon measurements would give

more accurate jet momenta and zT assessment because the momentum of the away

jet should be exactly balanced by the direct photon triggers in the leading order.

However, direct photon measurements suffer from two factors. Firstly, the direct

photon events are rare which causes large statistical uncertainties. The away-side

IdA plot, see Figure 5.1, demonstrated the size of the statistical uncertainties in the
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isolated photon analysis. We may compare it with Figure 5.3 from the previous

section. The π0-h± measurement offers more statistical precision. Secondly, the

inclusive photon samples, even with the isolation cut still have subtantial

background contributions from decay photons from π0 and η’s, which causes low

signal / background ratio. For a delicate modification observed in this d+Au

analysis, direct photon study might not be the ideal one. The first set of results

from the direct photon analysis indicate the advantage of hadron-hadron

correlations for this delicate effect in d+Au collisions we are searching for.

5.2 New Questions for Small Heavy Ion Collision Systems

As explained in the Introduction, recently new questions have arisen about the

physics present in smaller Heavy Ion collisions systems like d+Au and p+Pb with

many observations of new effects not previously observed in such high energy

nuclear collisions. These include azimuthal asymmetries consistent with the

presence of a hydronamic flow similar to the quark gluon plasma (QGP) flow in

Au+Au collisions, as well as an apparent abnormal enhancement in the peripheral

high pT jet production yield.

The full set of IdA, RI, jet yields and widths presented in the previous section

can be used to constrain the size of nuclear effects, and give more insight into many

of these questions.

5.3 Comparison to Peripheral RdA Results

As a first example of insights this thesis data can address concerning the new

questions in small collision systems, we consider new peripheral jet RdA

measurements that show suprising enhancement. We have discussed in Section

1.3.2, in peripheral d+Au collisions RdA and Rcp in p+p collisions should show some

suppression at low pT and enhancement at intermediate pT , due to the Cronin
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effects then come back to 1 at large pT . And in central Au+Au collisions, because of

the jet quenching and energy loss in the quark gluon plasma, RAA is severely

suppressed. For example, RAA values of π0 in central d+Au collisions are down to

about 0.3 for pT > 2 GeV. Interestingly, a few anomalies in the large pT region are

reported by PHENIX in peripheral d+Au collisions. One is π0 and η’s RdA

measurements [142], the other one is a full jet reconstruction analysis [143]. Both

surprisingly show some enhancement at large pT in the midrapidity region in

peripheral collisions, see Figure 5.2. This is another example of some of the new

questions about d+Au which this thesis data can address.

The general feeling in the field is that in peripheral collisions there should not

be much modification to jets from any nuclear effects, because the collisions are

generally between single nucleons just as in a p+p collsion. Instead, RdA relies on a

scaling factor to multiply p+p yields to equal the equivalent number of

nucleon-nucleon collisions comprising an d+Au collision. The nuclear modification

factor RdA determination needs Ncoll (or Nbinary in some literatures), which might

cause the anomalies observed in π0 and jet measurements in peripheral d+Au

collisions. However it still is yet to be confirmed that there is not more complicated

types of modifications of high pT jet properties.

One possible comparison is the peripheral away-side IdA with high trigger pT

plots from our measurement in Figure 5.3. In contrary to the RdA results, there is

no enhancement in large pT bins in IdA plots of peripheral d+Au collisions. Since

the IdA measurement avoids the scale factor issue in RdA, it gives a different picture

in peripheral d+Au collisions. We have not observed any abnormal enhancement in

peripheral d+Au collisions. Thus our data favors an issue with the understanding of

the scale factor.
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Figure 5.2: Nuclear modification factor RdA from π0, η and full jet reconstruction

measurements by PHENIX. The peripheral results show some enhancement at large

pT [142] [143].

.

5.4 Establishment of Centrality Dependent Nuclear Effect for RI

Our data show the presence of delicate suppressions at high zT and

enhancements at low zT in central d+Au collisions. Such jet modifications are not

present in peripheral d+A collisions. By eye the IAA and RI ratio itself for different

centralities seems to indicate a nuclear effect, that is to say, a non-flat shape, with

values different than one. But to what level are these features statistically significant

and how do they evolve with how deeply within the Au nucleus the deuteron strikes.
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Figure 5.3: Away-side IdA in peripheral d+Au collisions. There is no evidence for

an enhancement in high partner pT regions in peripheral d+Au collisions. The black

data point with zT above one comes from 5-7⊗5-7 GeV/c bin, where the average

⟨zpartnerT ⟩ > ⟨ztriggerT ⟩, and the jet information is diluted by other contributions.

First we may observe the RI ratios themselves and quantify the non-flatness of

their shape. By cancelling out the major systematic uncertainties, RI plots show

these modifications in a quantitative way. We may use a linear function to fit the

lowest trigger pT bin, and a non-zero slope value will therefore give some indication

of the level to which the jet function is non-flat. We find that significance of a

non-zero slope value for the most central bins is better than about 2σ,

corresponding to 95% probabilities. Furthermore, we can view the full centrality

dependence of these jet modifications in a clearer way. The plot of fitted slope

values shows a centrality dependence, see Figure 5.4. The 0-20% and 20-40%

centrality bins show a deviation from 0 about 2σ, and the other two 40-60%, 60-88%

are still consistent with zero, showing no such modifications.
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Figure 5.4: Centrality dependence of the slope fitted with the RI vs zT plot in 5-7

GeV/c trigger pt bin. The statistical uncertainties are represented by vertical bars,

and the systematic uncertainties are represented in boxes. The 0-20% and 20-40%

data points are the ones on the right. The 40-60% and 60-88% data points are the

ones on the left. The two central data points show ∼ 2σ deviations from zero. The

two peripheral data points are still consistent with zero within uncertainties.

To differentiate the roles of the modifications in high and low zT region, we use

a constant to fit RI vs zT plot in these two regions ( low zT < 0.4, high zT > 0.5)
after combining the statistical and systematic errors. The fitted value means

< RI >zT . The behaviour of the double ratio in different zT regions are different, see

Figure 5.5. The RI in low zT increase as the collision goes to more central.

However, the RI in high zT doesn’t show a clear trend of changes in different

centralities. The ratio of the two values in low and high zT regions is shown in

Figure 5.6. The difference between the two regions are clear in the central two bins.
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The two central data points deviate from unity by 2σ, while the two peripheral data

points are consistent with unity within uncertainties.
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Figure 5.5: Centrality dependence of the double ratio values in low and high zT region.

The statistical uncertainties are represented by vertical bars, and the systematic

uncertainties are represented in boxes. The low zT RI increases in a seemly systematic

way when the centrality increases. The high zT RI doesn’t show a clear trend in

changes.

In summary, this two-particle jet measurement shows a picture of suppression

at high zT and a slight enhancement at low zT in central d+Au collisions. This

feature observed in data is qualitatively similar, but much smaller, to the one in

Au+Au collisions.
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uncertainties are represented by vertical bars, and the systematic uncertainties are

represented in boxes. The ratio is consistent with unity in peripheral collisions. It

deviate from unity about 2σ in central collisions.

5.5 Interpretation of RI

Now that we’ve established a centrality dependent modification of the

correlations in d+Au collisions, we can naturally ask the question to what physics is

it due to?

If QGP or something similar exists in d+Au collisions, it could have other

signals indicating its presence such as jet energy loss. In Au+Au collisions, the

suppression in high zT is attributed to the jet energy loss in a quark gluon plasma,

and the enhancement in low zT is explained by the recovery of energy lost in the

medium. Figure 5.7 from [102] shows that the away side jet disappears in the

central Au+Au collisions. This phenomena is used to demonstrate the presence of a

quark gluon plama, which causes the loss of energy of the away side jet. Figure 5.8
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from [144] shows that the excess in low zT in central Au+Au collisions is a large

effect (IAA ∼ 2 in large cone sizes). Also, the deficit in high zT in central Au+Au

collisions is large too (IAA ∼ 0.2 in large cone sizes). This plot also shows the

modification gets larger when the integration range increases, which is consistent

with the idea that the redistributed energy is spread into a wider area. Full jet

reconstruction measurements show the similar feature in heavy ion collisions. Figure

5.9 shows that the ratios of charged hadron fragmentation functions between central

and peripheral events in Pb+Pb collisions have similar enhancements in low z. The

lack of a large suppressions in high z is because the jet reconstruction method

require the existance of a jet which introduces a bias to remove the large

suppression in central collisions [145].
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Figure 5.7: Correlation functions in central Au+Au collisions [102]. The away side

jet peak is disappeared in central Au+Au collisions. This is believed to be caused by

the jet energy loss into the medium when the away side jet travel trough the quark

gluon plasma.
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Figure 5.8: Away side IAA plot in central Au+Au collisions, which shows the

prominent energy loss and recovery in a quark gluon plasma [144]. Here ξ = ln(1/zT ).

One possible explanation for the phenomena observed in the RI ratio in this

analysis is an energy loss mechanism from nuclear medium. It might comes from a

possible quark gluon plasma, especially when the collective flow is discovered in

p+Pb and d+Au collisions in LHC and RHIC respectively (see the discussion in

Section 1.4). A direct comparison with Au+Au result is obtained by using the vn

subtracted 4 < pπT < 10 GeV/c data from [146]. We compared our 5 < pπT < 7 GeV/c

d+Au results with the Au+Au ones in Figure 5.10 to show the relative size of

effects in both systems.

It is clear that a qualitatively similar effect as seen in RI in d+Au is also seen

in Au+Au data. In Au+Au collisions we know this is due to energy loss. One goal

of the current research is to determine to what extent the similar looking d+Au
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Figure 5.9: Ratio of charged hadron fragmentation function D(z) between central

and peripheral Pb+Pb collisions from ATLAS reconstructed jet measurements [145].

result might also be attributed to an energy loss. This means looking into what

other known physics besides this could cause similar modifications to RI.

However, the feature observed in our d+Au RI data might merely or mainly

come from the cold nuclear matter effects partially because a quark gluon plasma is

not traditionally believed to exist in d+Au collisions. In order to constrain the

possible cold nuclear matter origins, we use Monte Carlo simulations to compare

with the data. We first investigate the kT effect, because a large kT value in hard

scattering (or say, triggered events) could cause jet imbalance in mid-rapidity and

RI’s departure from unity. Then we check the effects of nuclear modifications of the

parton distribution functions by EPS09 nPDF sets, because the shadowing /

anti-shadowing effect there might cause an enhancement or suppression in certain

zT regions. To incorporate the collision geometry effect, we apply EPS09s nPDF
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Figure 5.10: RI results compared between d+Au and v2 v3 corrected Au+Au data.

The d+Au 5-7⊗5-7 GeV/c data point is removed due to possible kinematic bias (see

discussions in Section 4.3). The size of RI modifications in d+Au collisions are much

smaller than Au+Au ones.

sets too. HIJING has the capability to simulate the jet quenching (or say, jet energy

loss) and soft interactions (by mini-jets) in A+A collisions, also contains the

shadowing / anti-shadowing effects from nPDF, so we adopt HIJING to simulate

d+Au collisions too, and measure the size of enhancement / suppression effects.

Even if we find a cold nuclear matter effect that is qualitatively similar, the data,

due to its precision should still have relevance to the possible existence of energy

loss effects in d+Au since by constraining the cold nuclear effects, we can then

provide limits on the possible size of any additional energy loss effects.

5.6 PYTHIA Studies of the kT Effect

PYTHIA (not an acronym) is a high energy particle collision event generator

[147] [148] which is especially accurate for elementary hadron-hadron collisions. It

simulates leading order 2 to 2 perturbative QCD parton scattering processes
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including parton probability distributions for various colliding hadrons and

hadronization of any partons that form jets in the processes. All known QCD and

QED scattering processes can be included and PYTHIA provides the correct

sampling of the processes based on the perturbative cross sections. It also includes

many known physics effects that occur in the hadron-hadron collisions such as

models for soft particle production, remants of the hadrons which do not participate

in the hard scattering, etc. It has been used to study several possible “cold” nuclear

matter effects that we think could potentially cause the observed modifications seen

in the data.

The first effect investigated was nuclear kT effect. The kT effect was mentioned

in the introduction. In this context kT is net tranverse momentum of the two jets

produced in a single 2 to 2 jet process. Normally this should be 0 assuming each

intially scattered parton carries only longitudinal momentum in the beam direction.

This is the average effect which causes near and awayside peaks 180 degrees from

each other in the measured jet production. However event by event, an effective

non-zero kT can be observed which fluctuates around 0. It is expected that in large

nuclei, due to net transverse momentum of the nucleons themselves and other

effects, a larger should be observed. STAR has measured this extra nuclear kT effect

in 2011, which is integrated over all centralities of 10-20 GeV/c di-jet measurement

in d+Au collisions, see Figure 5.11. The measurement shows about 1 σ larger kT in

d+Au compared to p+p. In the 2-p angular correlations measured in this thesis,

this larger di-jet kT will result in larger awayside angular distribution widths since

the jet fragmentation hadrons we measure are approximately on average in the same

direction as the underlying jets measured shown in Figure 5.11.

The PYTHIA study on the potential nuclear kT effect is as follows. PYTHIA 6

is used with a set up of 200 GeV, using the default set of input parameterswhich
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control many features of the many physics processes involved in the full event

generation described above. The default parameter set is known to reproduce

hadron-hadron collisions over a wide range of collision energies and should be

sufficient for this study. The degree to which the event generators used in this and

the other studies match the relevant features of the data is discussed below in the

HIJING section. We investigate the kT effect on the awayside/nearside ratio.

Because the largest effect is in the lowest trigger pt bin, we focus on 5-7 GeV/c

triggers for the study. The double ratio RI is calculated in different kT settings in

PYTHIA, see Figure 5.12. The rapidity acceptance is −1 ≤ η ≤ 1 to increase the

statistics, which is larger than PHENIX acceptance. We also check with PHENIX

central arm acceptance, the result remains the same within statistical uncertainties.

The triggers are chosen as π0 and π± to increase the statistics, as expected, the π0

trigger result is consistent this with a relatively low statistical precision.
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Figure 5.11: kT Effect in p+p,d+Au collisions measured by STAR [91].
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Figure 5.12: The modification of RI due to different kT settings in PYTHIA study.

We show the double ratio RI from two possible scenarios. One realistic setting is kT

= 3 GeV/c versus kT = 2.8 GeV/c, and the other exaggerated seting is kT = 3 GeV/c

versus kT = 2 GeV/c. The size of effect is averaged in all centralities.

The realistic extra nuclear kT values, based on the values of kT measured by

STAR result in nearly negligible effect which is not consistent with our data–note

that for this plot we combine results from all centralities into a single bin, which is

still dominated by the more central events in order to match the centrality of the

STAR measurment. In more central collisions due to the larger nuclear density

sampled, one may expect the nuclear kT to increase. The central collisions kT value

has not been measured, but it is expected to be only slightly larger due to the fact

that 2-p correlations awayside widths in many previous measurements, and such as

those given in this thesis data in Figure 4.13-4.14 generally do not appear to

increase greatly with centrality. In order to demonstrate what a relatively large

increase of the nuclear kT value in central collisions could do, we choose to test an

increase of one 1 GeV/c in PYTHIA from the measured p+p value of 2.8 GeV/c. We
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find that such a large increase can cause some suppression of awayside / nearside

ratio, but the phT dependence is generally too small for an explanation of slope we

see in data. From this study, we believe that kT effect is not the major source of the

enhancements in low zT and the suppressions in high zT observed in our data.

5.7 PYTHIA Study of Quark Gluon Jet Mixing

The feature observed in central d+Au data is somewhat similar to our

knowledge of gluon jets. Gluon jets are known to be softer and broader than quark

jets. If some physics caused there to be more gluon jets emitted from central d+Au

collisions than from normal p+p or neutron-proton collisions–we actually also

doubled checked in PYTHIA that p + p vs. n + p showed no differences, since central

d+Au involves a substantial number of n + p collisions as well–then this could

potentially mimic the effect we see in RI. To investigate into increased gluon jet

effects in RI, we use PYTHIA to generate all QCD di-jet hard scattering events,

which includes

● Subprocess 11: qi + qj → qi + qj

● Subprocess 12: qi + q̄i → qk + q̄k

● Subprocess 13: qi + q̄i → g + g

● Subprocess 28: qi + g → qi + g

● Subprocess 53: g + g → qk + q̄k

● Subprocess 68: g + g → g + g

In this study, we categorize the interactions based on the scattered (outgoing)

partons,

● Class A: g + g
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● Class B: q + g

● Class C: q + q

Class A includes the subprocess 68 and 13, where subprocess 68 dominates due to

the fact that the valence quarks dominate the sea quarks. Class B includes the

subprocess 28, which is called the Compton Scattering. Class C includes the

subprocess 11, 12, and 53. The probability distributions for these subprocesses in

high pT π0 triggered events are shown in Figure 5.13. The Compton scattering and

the qq scattering dominate the π0 triggered events.
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Figure 5.13: Probability distributions for hard scattering subprocesses in π0 triggered

events.
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First, to demonstrate the basic concept of softer gluon jet fragmentation

compared to quark jets, we compare cases with only gluon jets in the final awayside

jets to cases where only quark jets comprise the awayside. The result is shown in

Figure 5.14 which is explained in more detail below.

 (GeV/c)h

T
p

1 1.5 2 2.5 3 3.5 4 4.5 5

R
I

0.5

1

1.5

2

2.5

Class A

Class B

Figure 5.14: RI modifications in Class A and Class B events due to the gluon jets.

This is like the ratio of gluon to quark jet fragmentation functions in two different cases

of production processes and shows that gluon jets generally have softer fragmentation

than quark jets.

Class A and B includes gluon jets in their final state productions on the

awayside. For Class A there are only gluon jets in the final state, so we divide this

by Class C which only has quark jets in the final state to do a more straightfoward

gluon to quark comparison. Note that these effects may also include effects of the

different production processes. If we define

RI Class A ≜ Y A
g−g / Y N

g−g

Y A
q−q / Y N

q−q

(5.1)
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where g-g means the events with gluon jets on both near and away-sides, q-q means

the events with quark jets on both sides. Thus this is a demonstration of gluon jets

having softer fragmentation on average than quark jets.

For Class B in the same figure, which involves the Compton scattering where

both a quark and gluon are present in the final state, we compare the cases where

the gluon and quark appear in opposite configurations with respect to the near and

awayside. We compare the RI ratio (away-side/near-side yields ratio) between the

events with a quark in near-side and a gluon in away-side to the events with a gluon

in the near-side and a quark in the away-side, and define RI as

RI Class B ≜ Y A
q−g / Y N

q−g

Y A
g−q / Y N

g−q

(5.2)

Here, q-g means the events with near-side quark jets and away-side gluon jets,

vice versa for g-q. Figure 5.14 is just meant to demonstrate the direction of the

effects we should expect if more gluon jets were present than quark jets for any

unspecified reason in the nuclear collisions. The modification of RI in this plot is

much larger than we should expect any such modifications to cause in our data

measurement of RI however, because our p+p reference there will always contain

the normal mixture of quark and gluon jets, not exclusively just quark jets.

Instead the realistic possible modification of A/N ratio in d+Au collisions (or

say RI’s deviation from 1) only comes from the potential q and g jets conversions in

the numerator d+Au ratio. By using PYTHIA to simulate changes to the

numerator only, we may evaluate the size of RI’s modification in extreme cases. In

the most realistic but still extreme scenario, suppose we assume there is some final

state process that converts all quark jets after they are produced into gluon jets, but

does not affect the original gluon jets. That is if we assume that all q jets are

converted to g jets, i.e. q-q converts to q-g and g-q converts to g-g, the modification
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of RI is shown in Figure 5.15. This effect is seen to be unlike our measured RI with

an enhancement at low z of slightly less than observed but no suppression. Keep in

mind that this would still represent an extreme conversion of all quark jets, thus

more realistic conversion types would likely be far less in the magnitude of the

modifications. Based on this we conclude that the origin of the modification in A/N

ratio in central d+Au collisions is not likely to come from changes to the quark to

gluon mix.
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Figure 5.15: RI modifications if we assume all q jets are converted to g jets.

We end by noting, however, that other more exotic types of changes to the

quark to gluon jet mixture could at least result in larger modifications which are

qualitatively similar to our measured RI. For example if we assume many “double

conversions”, where a substantial number of q and g jets converted to each other

simultaneously (qg pairs go to qg, q↔ g), the RI modifications are shown in Figure

5.16. Note though, that even in this case, the enhancement in the simulation results
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extends to a much larger zT values and thus has a different shape than our

measured RI.
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Figure 5.16: RI modifications if we assume substantial “double conversion” which is

the same as the other plot, but where simultaneously g jets are also converted into q

jets at large rates.

5.8 Nuclear Modification of Parton Distribution Functions

Nuclear modifications of parton distribution functions are major sources of

initial state cold nuclear matter effects. The shadowing and anti-shadowing effects

could cause enhancements and suppressions at certain zT regions in final state

products. EPS09 is the most widely accepted nuclear PDF set, therefore, we use

PYTHIA + EPS09 to investigate the effects from the nuclear modifications of

PDF’s. In this study, we pick a realistic kT setting of 2.0 GeV/c as well as a

minimum 0.2 GeV settings (both show the same results). We turn on hard and

semi-hard scattering processes. The value of x and Q2 passed to leading order
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Figure 5.17: The modification of jet functions caused by nuclear modifications

in parton distribution functions. CTEQ5L is a PDF set without any nuclear

modification, which is the default one in PYTHIA6. EPS09 is a widely used nuclear

nPDF set. The uncertainties from EPS09 is represented by the boxes around the

data points, which is pretty small.

EPS09 PDF sets are from PYTHIA’s PARI(34) and PARI(15) perspectively. To

prevent possible ordering of x1 and x2 in PYTHIA, we switch them by choosing

PARI(33) as x, and the result remains the same. PYTHIA has multiple definition of

Q2, as explained in MSTP(32). We choose −t̂ as the definition of Q2 in PYTHIA to

make it consistent with EPS09. The uncertainties of EPS09 are evaluated and we

take a quadratic sum of all 30 uncertainties since they are calculated from a Hessian

matrix.
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The jet functions shows that the modifications have larger effects in higher

partner pT bins, as shown in Figure 5.17. And the size of modification is close to the

uncertainties.

In accordance, RI’s plot shows that the size of modification is very small (≲ 1
%), see Figure 5.18. The RI modification from EPS09 nuclear PDF is inconsistent
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Figure 5.18: The modification of RI caused by nuclear modifications in parton

distribution functions. The shaded area is the uncertainties from EPS09 nuclear

nPDF set. The black area is for triggers with 5 < pT < 7 GeV/c. The red area is for

triggers with 7 < pT < 9 GeV/c.

with our data, since there is no suppression in the EPS09 simulation at all. To

investigate the reason for such a small nuclear effect, we plot x vs Q2 in triggered

events (x1 and x2 are essentially symmetric as we expected), see Figure 5.19. We

can see the most probable events are those with x ≈ 0.02 and Q2 ≈ 30 ∼ 50 (GeV/c)2
or Q ≈ 6 ∼ 7 GeV/c. If we plot the EPS09 nPDF sets with such momentum transfer

values, for example, 6 ≤ Q ≤ 7 GeV/c (See Figure 5.20), we would find that x ≈ 0.02



190

area is about in between of the shadowing and anti-shadowing regions, where RAu
i

values of u d valence quark and gluon are pretty close to unity. This explains the

small size of the effect from nuclear modifications in PDF. The reason to use valence

u and d quarks is based on CTEQ6M PDF sets shown in Figure 5.21 from [69],

where the valence quarks’ f(x) is always higher than the sea quarks’ in all relevant

kinematic ranges. One possible concern is that the nuclear modification around x ∼
0.02, Q ∼ 6 GeV/c is large, and f(x) from NNLO MSTW2008 shows larger sea

quarks’ xf(x), which is different than CTEQ6, see Figure 5.22 from [31] (Possibly,

this is normalized in x space). Anyway, we use sea u d quark in EPS09 nPDF sets,

the results are still small, see Figure 5.23.
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Figure 5.19: x vs Q2 of triggered events in PYTHIA study. The most probable events

are those with x ≈ 0.02 and Q2 ≈ 30 ∼ 50 (GeV/c)2 or Q ≈ 6 ∼ 7 GeV/c. The cut-off

of Q2 is due to CKIN(3) setting for minimum pT values in PYTHIA.

There are nPDF sets with spacial information available, such as EPS09s. In

principle, we can use Glauber model to calculate the thickness function and sample
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Figure 5.20: RAu
i of EPS09 nPDF sets for various partons when 6 ≤ Q ≤ 7 GeV/c. We

can see that when x ≈ 0.02, the nuclear modifications for the valence u, d and gluon

are close to 1, which cause a small effect in modifications of jets and RI values.

Figure 5.21: Overview of CTEQ6M PDF sets at Q = 2 and 100 GeV/c2 [69].

the distribution of the impact parameter b, then use PYTHIA + EPS09s to

investigate the nPDF modifications and their centrality dependence. HIJING uses

similar optical Glauber model in its calculations, so the impact parameter
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Figure 5.22: Overview of NNLO MSTW2008 PDF sets at Q = 10 and 10,000 GeV/c2

[31].

distributions are obtained from our HIJING simulations. Potentially EPS09s nPDF

sets could have more features from spacial dependence, see Figure 5.24. It is

reasonable to check EPS09s to see if there is a large effect. The result is shown in

Figure 5.25, where the effect is still small. The distribution of the impact parameter

b is roughly linear due to the geometry settings, so the most b values are close to 5

fm, where RAu
u is still close to unity. So the nuclear PDF modifications have a very

small effect in RI and are not able to explain the observed

enhancement/suppression in central d+Au events.

5.9 HIJING Simulations

HIJING (not an acronym) is a simulation program incorporating collision

geometries, nuclear shadowing effect, multiple collision scenarios, multiple mini-jets

and jet quenching [149] [150] [151] [152]. With jet quenching turned off, HIJING
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Figure 5.23: The modification of RI caused by nuclear modifications in parton

distribution functions with sea u d quarks. The shaded area is the uncertainties

from EPS09 nuclear nPDF sets. The black area is for triggers with 5 < pT < 7 GeV/c.

The red area is for triggers with 7 < pT < 9 GeV/c. The uncertainties for sea quarks

are much larger than the ones for valence quarks.

would be an ideal tool to study the possible cold nuclear effect origin of the

observed jet modifications in central d+Au data. HIJING uses PYTHIA 6 code to

generate many aspects of its nuclear events for each nucleon-nucleon collision. To

simulate the collision geometries, we use the collision parameter 0 < b < 5 fm for

central d+Au collisions and 5 < b < 11 fm for peripheral d+Au collisions.

First of all, HIJING reproduces asymmetric particle production in rapidity for

d+Au collisions, see Figure 5.26, which is similar to PHOBOS measurement in

Figure 5.27. This uneven η distribution might cause a problem in our η acceptance

correction. In our previous analysis in Section 3.11, we assume that the η

distribution is flat, then get the triangle distribution in ∆η. We’ve observed such

uneven η distribution in particle production, and we will see that HIJING still

produce RI values very close to unity, which demonstrates that the η acceptance
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Figure 5.24: EPS09s nPDF for valence u quarks when Q = 1.3 GeV/c [74].

effect on RI is pretty small. However, though the systematic uncertainty is small, if

the measured signal is minute, we still need to take care of η acceptance correction

effect.

In HIJING, the default kT setting is 0.44 GeV. The results are shown in Figure

5.28. As we can tell, the default kT setting can not reproduce the features in data.

There is almost no suppression from the out-of-box HIJING simulation. However it

does not match some features of the data very well. Generally since HIJING and its

underlying PYTHIA are based on leading order perturbative QCD, they are known

not to reproduce the normalization of particle yields seen in data. For example in

both cases, PYTHIA and HIJING p+p, the normalization of jet function per trigger

yields seems to be off by about a factor of 1.5-2.0. However we do see that the

relative changes of the yields with the associated hadron momentum is similar to

the data. Since our ratio RI will cancel out any such normalization difference it is
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Figure 5.25: The modification of RI caused by EPS09s nuclear parton distribution

functions. The shaded area is the uncertainties from EPS09 nuclear nPDF set. The

black area is for triggers with 5 < pT < 7 GeV/c. The red area is for triggers with 7 <
pT < 9 GeV/c.

not important to demand that the simulations reproduce the normalization. Instead

we deem the simulation to data matching acceptable if it reproduces such relative

changes, and especially we focus more on requiring primarily that the simulations

reproduce the shape of the correlations.

HIJING doesn’t provide an interface to change the kT value. And as far as our

current understanding of its code, HIJING might not have kT effect included in its

main design. In order to study the kT effect in HIJING, we tried to modify HIJING

code and introduce larger kT effects in the remnants, which is the only place HIJING

adds the additional parton level kT kick. The setting value might not be the real kT

value in effect. The multiple application of kT kick in HIJING code might introduce

a larger kT value than the settings. We tried multiple kT settings, starting from the

default values 0.44 GeV/c, to 1.2 GeV/c, 2.0 GeV/c, and 2.8 GeV/c. We investigated

into the systematic changes of jet widths and IdA when we turned up kT values.
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Figure 5.26: HIJING particle production in η distributions with an normalization

similar to the probability distribution funciton. Panel (a) shows the charged hadron

pseudorapidity distribution in central HIJING simulation (0 < b < 5 fm). Panel

(b) shows the π0 trigger pseudorapidity distribution in central HIJING simulation

(0 < b < 5 fm).

The near and away-side jet width for kT = 0.44, 1.2, 2.0, 2.8 GeV/c are shown

in Figure 5.32. As we can see, the near-side jet widths of p+p and d+A collisions

are both much smaller than the data (See Section 4.2) when kT values are the

default 0.44 GeV/c. When kT value increases, p+p width doesn’t change. The

away-side width of d+Au gets larger, while the near-side width of d+Au remains

the same. The near-side widths match the data reasonably (See the data plots in

Section 3.11, 4.2), and their insensitiveness on the kT values reflects the fact that

the near-side jet width depends on jT instead of kT . The partner pT dependence of

the away-side width seems follow the same feature in data. When the partner pT

increases, the away-side jet broadens. Therefore, in order to tune the kT effect to a

realistic one, we compare the away-side jet widths. Meanwhile, we checked the near
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Figure 5.27: The charged hadron pseudorapidity distribution from PHOBOS

measurement in [153].

and away-side IdA values to make sure they are in a reasonable values and to peek

into the underlying parts of RI’s modifications.

Lacking of kT dependence in p+p results, HIJING seems have not implemented

this effect in a good way. This is consistent with our current knowledge of HIJING

that it introduces the parton level kT only in the remnants. PYTHIA has

implemented kT effect in a better way, and known to match quite a bit experimental

data. One possible solution would be looking into PYTHIA’s p+p results. By

comparing away-side with between HIJING d+Au and PYTHIA p+p results, we

found a best match when kT = 2.0 GeV in central d+Au in HIJING. The pp’s kT

value in PYTHIA is taken as a realistic value 2.8 GeV/c, close to the experimental

measurement value, see Section 5.6. The away-side jet width of both are shown in

Figure 5.29. It indicates that the effective kT value in d+Au HIJING is similar to
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2.8 GeV/c set in PYTHIA. When we look into the modification of RI in this case

(see Figure 5.30), it is different from the data, and similar to the exaggerated kT

result in PYTHIA’s study (see Section 5.6). There is no enhancement in low zT

region at all, only suppression in high zT region. To demonstrate the modification

difference, we show the jet functions in Figure 5.31.

In summary, based on current understanding of HIJING, we don’t believe

HIJING could reproduce our data in central d+Au simulations.
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Figure 5.28: The modification of RI from HIJING simulation with default kT = 0.44

GeV/c for both d+Au and p+p.
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Figure 5.31: The modification of jet functions from HIJING d+Au with kT = 2.0

GeV/c and PYTHIA p+p with kT = 2.8 GeV/c.
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Figure 5.32: Near and away-side jet widths with different kT and trigger pT values

in d+Au and p+p HIJING simulaitons. The left is the near-side width, the right is

the away-side width. From top to bottom, the kT values are 0.44, 1.2, 2.0, 2.8 GeV/c.

The trigger pT values are 5-7 GeV/c and 7-9 GeV/c.
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5.10 Summary

We have analyzed PHENIX data from Run08 d+Au and Run06 p+p collisions

at
√
sNN = 200 GeV by using two particle azimuthal correlation method, and have

measured the jet properties, such as the jet yields, width and observed some clear

suppression and delicate enhancement in jet modifications in central d+Au

collisions, which are qualitatively similar but much smaller in magnitude to central

A+A heavy ion collisions.

Our initial direct photon study suffers from low statistics. We use π0 triggers to

decrease the uncertainties from statistic fluctuations which helps to see the small

effect in d+Au collisions. Conventional IdA comparison shows relatively large

systematic uncertainties. In order to partially cancel out systematic uncertainties,

we proposed and constructed a double ratio quantity RI to test the jet

modifications in d+Au collisions.

In peripheral d+Au collisions, our data show no significant yield enhancement

compared to pp in the high pT trigger regime. This is different from the single π0/η

and jet reconstruction RdA results previously presented by PHENIX which do reveal

an unexpected enhancement in large pT region. My peripheral results suggest that

those enhancements in peripheral d+Au collisions might just come from the

determination of Ncoll parameters instead of modifications of the jets.

In central d+Au collisions, our RI measurements have the precision to test

subtle jet modifications, especially the one in low zT region. We observed a clear

suppression of RI in the large zT region and a small enhancement in the low zT

region. The enhancement at low zT is about 2σ, which means the probability of the

existence of such a modification instead of a statistical fluctuation is about 95% .

The observed central d+Au modifications are qualitatively similar to the features in

central Au+Au or Pb+Pb collisions, where it is attributed to the jet quenching and
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energy loss/recovery in a quark gluon plasma. The modifications in d+Au collisions

are on a much smaller scale compared to Au+Au, which is no surprise because of the

relatively small nuclear medium in d+Au systems. Considering the recent discovery

of the collective flow in central p+A collisions both in LHC and RHIC, this

measurement could be another piece of information to indicate a possible existence

of QGP-like medium in central p+A collisions. There are currently few model

calculations, if any, describing such modifications in central d+Au collisions, neither

with the quark gluon plasma picture nor with just cold nuclear matter effects.

In order to constrain or test the possible physics origin of these modifications in

central d+Au collisions, we investigate into a few possible causes related to this near

/ away-side ratio modifications.

● Firstly, one candidate is the nuclear kT effect which is known to exist in p+p

and d+Au collisions. We use the PYTHIA to test large nuclear kT effects in

RI. The realistic kT values are unable to reproduce the large suppression in

the high zT region. An exaggerated kT value in central events could cause a

similar sized suppression, however, it does not appear to show a substantial

excess in low zT . Considering the lack of any enhancement feature and, under

the assumption that the exaggerated kT values are likely unrealistic, we

believe that kT alone could not cause such modifications in data.

● Secondly, we test the gluon jet contribution in this modifications. By

assuming conversion of all quark jets to gluon jets or vice versa, RI

modifications show either much smaller modifications or different features

with the extreme settings. Therefore, we don’t believe the gluon jet mixture

mechanism could play an important role in the jet modifications.
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● Thirdly, we utilize EPS09 nPDF set to study the nuclear modifications of

parton distribution functions in the initial state. The effect turns out very

small, and has totally different features. We believe the nuclear modifications

in PDF are insufficient to cause RI’s deviation observed in the data.

● Lastly, we use HIJING to simulate d+Au cold nuclear matter effects. We

depend on the jet function’s shape to tune the kT settings in HIJING. The

realistic kT settings show similar effect as PYTHIA kT studies, there is no

enhancement in low zT regions. With current knowledge of HIJING, we can’t

reproduce the data by simulations.

In the prospectus of future experiment progress, we see a series of new runs set

up in both RHIC and LHC. In 2014, RHIC has a new 2.4 weeks run for He+Au

collisions at
√
sNN = 200 GeV, which delivers 134 nb−1 data. In 2015, RHIC will

have a p+Au run at
√
sNN = 200 GeV9. In 2017, LHC will have a run either for

Pb+Pb or p+Pb. In 2020, LHC will have a definite p+Pb run 10. We can expect

more data of the small collision systems coming from experiment around the world.

The experiments at LHC certainly have the capability to detect π± as well as π0 in a

large region of pT values by using their vertex tracking detectors. The Figure 5.33

shows the statistical precision of CMS measurement in LHC p+Pb data collected in

the 2013 LHC p+Pb run about 31 nb−1.

In the end, we observed some jet modifications in central d+Au collisions

qualitatively similar to energy loss effects in the quark gluon plasma. No correct

theory calculations currently directly address this kind of modification. Our

simulations that incorporated various cold nuclear matter effects are unable to

reproduce this phenomena observed in the data. However we expect that further

9 http://www.agsrhichome.bnl.gov/RHIC/Runs/
10 http://lhc-commissioning.web.cern.ch/lhc-commissioning/

http://www.agsrhichome.bnl.gov/RHIC/Runs/
http://lhc-commissioning.web.cern.ch/lhc-commissioning/
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Figure 5.33: Statistical precision of CMS p+Pb measurement. This plot is adapted

from the one from [96]. This is the correlation functions for 5.02 TeV p+Pb collisions

within the multiplicity range 220 ≤ Noffline
trk ≤ 260 (filled squares) and Noffline

trk ≤ 20

(open squares) for pairs with short-range region(∣∆η∣ < 1) with 1 < passocT < 2GeV/c

and 6 < ptrigT < 12GeV/c. It shows the good statistical precisions CMS has been able

to achieve with LHC 2013 p+Pb data.

development of theoretical or model calculations of many of these effects can be

constrained by comparison to our data, especially the precise RI ratio data. Such

constraints should be able to set concrete limits on the contributions of various cold

nuclear or possibly hot QGP-like effects.
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Appendix A: Acceptance Correction

The acceptance correction is crucial in the two-particle azimuthal correlation

measurement, since there is no perfect detector, or say, no detector’s efficiency is

isotropic. In order to deal with it, we could use the event mixing technique. In the

toy model below, we consider only the azimuthal angle dependence for all quantities

to keep everything short. In real events, the distribution of true physics pairs is

represented by

d2NAB

dφAdφB
= NAB d2pAB

dφAdφB
(A.1)

Here, d2NAB

dφAdφB is a joint probability density function, whose integral should be unity,

and it is meaningful statistically. p itself is probability mass function. It can

represent the distribution of the physical quantities, such as NAB, if we have a large

enough sample. And the per event quantity is

d2nAB

dφAdφB
= NAB

N evt

d2pAB

dφAdφB
= nAB d2pAB

dφAdφB
(A.2)

Considering the the efficiency of detectors and cuts for particle type A and B,

the distribution of detected pairs should be

d2NAB

dφAdφB
= NAB d2pAB

dφAdφB
ǫA(φA)ǫB(φB) (A.3)

d2nAB

dφAdφB
= nAB d2pAB

dφAdφB
ǫA(φA)ǫB(φB) (A.4)

And the pair angle distribution could be evaluated by

dNAB

d∆φ
= NAB∬ d2pAB

dφAdφB
δ(PA(φA − φB) −∆φ)dφAdφB (A.5)

dnAB

d∆φ
= nAB∬ d2pAB

dφAdφB
δ(PA(φA − φB) −∆φ)dφAdφB (A.6)

Here we defined a function called PA (i.e. PHENIX Angle), which calculates the

pair angle between φA and φB and maps it into [0, π]. We may understand
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δ(PA(φA −φB) −∆φ) as a formal formulation of δ(φA −φB −∆φ). The detected pair

angle distribution is

dNAB

d∆φ
= NAB∬ d2pAB

dφAdφB
ǫA(φA)ǫB(φB)δ(PA(φA − φB) −∆φ)dφAdφB (A.7)

dnAB

d∆φ
= nAB∬ d2pAB

dφAdφB
ǫA(φA)ǫB(φB)δ(PA(φA − φB) −∆φ)dφAdφB (A.8)

In the previous equations, the joint distribution d2pAB

dφAdφB could be evaluated by the

conditional distribution

d2pAB(φA, φB)
dφAdφB

= dpA(φA)
dφA

⋅
dpB∣A(φB;φA)

dφB
(A.9)

Then we may rewrite the ∆φ distribution as

dnAB

d∆φ
= nAB

⋅∫ dpA(φA)
dφA

ǫA(φA)dφA

⋅∫ dpB∣A(φB;φA)
dφB

ǫB(φB)δ(PA(φA
− φB) −∆φ)dφB

(A.10)

dnAB

d∆φ
is a quantity we can measure in experiments, however ǫA and ǫB are hard to

evaluate in experiments, because the true physics quantities dnA

dφA ,
dnB

dφB are hard to

quantify. In this case, we could use a simplest but reasonable assumption that the

particle B’s conditional distribution dpB∣A(φB ;φA)
dφB depends on ∆φ only or say

PA(φA
− φB). If this assumption is true, we may get

dpB∣A(φB;φA)
dφB

= dpB∣A(PA(φA
− φB))

dφB
= dpB∣A(∆φ)

d∆φ
(A.11)

Note, p is probability mass function, so the derivative of ∆φ, or say the PDF,

should still be positive, and PA is just ∣φA − φB ∣ +C. Substitute it into the previous
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pair angle distribution,

dnAB

d∆φ
= nAB

⋅∫ dpA(φA)
dφA

ǫA(φA)dφA

⋅∫ dpB∣A(PA(φA
− φB))

dφB
ǫB(φB)δ(PA(φA

− φB) −∆φ)dφB

(A.12)

= nAB
⋅∫ dpA(φA)

dφA
ǫA(φA)dφA

⋅∫ dpB∣A(∆φ)
d∆φ

ǫB(φB)δ(PA(φA
− φB) −∆φ)dφB

(A.13)

= nAB
⋅
dpB∣A(∆φ)

d∆φ
⋅∫ dpA(φA)

dφA
ǫA(φA)dφA

⋅∫ ǫB(φB)δ(PA(φA
− φB) −∆φ)dφB

(A.14)

dpB∣A(∆φ)
d∆φ

is really what we want to measure, which shows the true physics

correlation between the two classes of particles A and B. nAB is relatively easy to

obtain by measuring single particle multiplicity, nAB = nAnB. So the problem goes

to how to quantify this part:

f(∆φ) ≜∫ dpA(φA)
dφA

ǫA(φA)dφA
⋅∫ ǫB(φB)δ(PA(φA

− φB) −∆φ)dφB (A.15)

The per event ∆φ distribution could be simplified as

dnAB

d∆φ
= nAB

⋅
dpB∣A(∆φ)

d∆φ
⋅ f(∆φ) (A.16)

The job relies on the event mixing technique. In this method, we mix the

particle A and B from different events, which should break the angular correlation

between them. In practice, we choose the same A particles, such as the trigger in

this analysis. And we choose slightly different particle B in mixed events, say, B′.

We will come back to it later to see how different it could be, and how similar it

must be. In this analysis, B′ is the same type of particles h±, similar pT and from

events with similar collision vertex. Then statistically (don’t forget this), it would
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be

dNAB′

mix

d∆φ
= NA∫ dpA

dφA
ǫA(φA)dφA

⋅ nB′∫ dpB
′

dφB′
ǫB
′(φB′)δ(PA(φA

− φB′) −∆φ)dφB′

(A.17)

= NA
⋅ nB′

⋅ g(∆φ)
= N evtnAnB′

⋅ g(∆φ)
= N evtnAB′

⋅ g(∆φ)
And the per event

dnAB′

mix

d∆φ
= nAB′

⋅ g(∆φ) (A.18)

Here, we define a function g as

g(∆φ) ≜∫ dpA(φA)
dφA

ǫA(φA)dφA∫ dpB
′

dφB′
ǫB
′(φB′)δ(PA(φA

− φB′) −∆φ)dφB′ (A.19)

When we compare f(∆φ) with g(∆φ), we would find that they are pretty

similar to each other. If we can make ǫB
′
the same as ǫB, and make dpB

′

dφB′

independent of φB′ , then we can easily use g(∆φ) to replace f(∆φ). This is the
reason why we wanted to choose B′ the same class of particle as B, i.e., the same

particle type h±, similar pT , similar event vertex. Also, the other key part is that

dpB
′

dφB′ should be flat in φ, which requires a well sampled mixed events. At least, we

should have a large enough sample to ensure this. Then one of our QA should be

monitoring this quantity dpB
′
(φB′)

dφB′ to be flat.

dpB
′(φB′)
dφB′

= const. (A.20)

The true physics distribution, dnA

dφA and dnB

dφB , should be isotropic, however the trigger

in experiments might break it. In our analysis, we are interested in rare physics

events, such as high pT jet events, direct photon events, so besides the Minimum
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Bias trigger, we utilize the ERT trigger, which trigger event recording by the

combination of high energy hits in EMCal and RICH detectors. Therefore, the ERT

trigger tends to select more events in or close to the acceptance of EMCal and

RICH in the central arm. This causes a bias in the azimuthal angle distribution of

both A and B. Based on Equation A.20, we need our B′’s distribution on φ to be

flat. To achieve this, we have to choose B′ from events triggered by the Minimum

Bias trigger. And for each trigger A, we mix it with a large number of Minimum

Bias events to make sure that the sample is large enough and the sample’s φ

distribution is flat. Therefore, we should keep an eye on the number of triggers, or

particle A, which should be an indication of the size of B′ sample. By an alternative

method, we can increase the number of events to mix with for the runs that has

fewer triggers. And we should be able to tell the necessary number of events to mix

with if we want the relative error of the acceptance correction function to be within

some extent.

There is one more thing we should be cautious. The efficiency ǫ fluctuates

between runs and changes with time. The acceptance correction, f(∆φ) ∼ g(∆φ),
should be applied based on the efficiency. Meanwhile, if the number of A is limited

in a run, dnA

dφA could fluctuate quite a lot between runs. These factors make the

desired acceptance correction much different. The best strategy is to apply the

acceptance correction separately for individual run. However, this strategy suffers

from the statistics, which makes dnB′

dφB′ in each run not perfectly flat, or we have to

mix a trigger with a very large number of mixed events. A practical way would be

grouping runs by the closeness of their efficiency and the particle A’s φ distribution,

then applying the acceptance correction for each run group. This should balance the

two seemly contradictory requirements (efficiency + dnA

dφA closeness versus statistics).

To ensure the sample size, we may simply reject runs with a small number of n′’s, or
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say, A’s, if we fix the number of events to mix with one trigger. To ensure the

closeness of efficiency, we can monitor dnB′

dφB′ for each runs in a run group. Because if

we got enough statics, or say dnB′

dφB′ was close to flat, then the similarity of dnB′

dφB′

reflects the similarity of ǫB
′
. The other way to verify ǫB

′
is to look into the overall

distribution of B′ in the Minimum Bias events for each run, which means looking

into the distribution in the partner data (singles TTree) in each run. For dnA

dφA and

ǫA, this could be taken care of by monitoring dnA

dφA of each run in a run group.

By requiring dnB′

dφB′ of each run is close to the overall average, such as requiring

the ratio to be within [90%, 110%], it won’t ensure a correct acceptance correction

for a run. Because a different dnA

dφA or ǫ in that run should make the acceptance

correction deviated from the average.
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Appendix B: Mean and Variance Estimation in

Histograms

The statistics calculation could be performed in histograms with precision, if

the binning is fine enough or the statistics (bin content) in bins are high.

Considering a histogram, whose X axis is x, contain bins starting from 1 to K, we

could label a bin with i ∈ [1,K], the bin content of bin i is N i, and the total bin

content is N ≡ K∑
1
N i. The filled x quantities are denoted by xij, as the diagram

shown below.

1, . . . , x1j , . . . , x
1
N1 ,´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N1

. . . xi1, . . . , x
i
j, . . . , x

i
N i ,´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N i

. . . xK1 , . . . , x
K
j , . . . , x

K
NK´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

NK´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N

Then the mean µ ≡ x̄ is defined as

µ ≡ x ≜ 1

N

K∑
i=1

N i∑
j=1

xij (B.1)

Here, xij is the x value of the jth element in bin i.

µ ≡ x̄ ≜ 1

N
∑
i

∑
j

xij (B.2)

= 1

N
∑
i

N i( 1

N i
∑
j

xij) (B.3)

= 1

N
∑
i

N iµi (B.4)

=∑
i

( 1
N
N i)µi (B.5)

=∑
i

wiµi (B.6)

Here we define

µi ≜ 1

N i
∑
j

xij (B.7)

wi ≜ N i

N
(B.8)
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and

Vari ≜ 1

N i

N i∑
j=1

(xij − µi)2 (B.9)

The variance Var ≜ (x − µ)2 is

Var ≜ (x − µ)2 = 1

N
∑
i

∑
j

(xij − µ)2 (B.10)

= 1

N
∑
i

∑
j

(xij − µi + µi − µ)2 (B.11)

= 1

N
∑
i

∑
j

[(xij − µi)2 + (µi − µ)2 + 2(µi − µ)(xij − µi)] (B.12)

= 1

N
∑
i

[∑
j

(µi − µ)2 +∑
j

2(µi − µ)(xij − µi) +∑
j

(xij − µi)2] (B.13)

= 1

N
∑
i

[N i(µi − µ)2 + 2(µi − µ)∑
j

(xij − µi) +∑
j

(xij − µi)2] (B.14)

= 1

N
∑
i

[N i(µi − µ)2 + 0 +N iVari] (B.15)

In the last step we use the definition of µi and Vari. Then we get

Var = 1

N
∑
i

[N i(µi − µ)2 +N iVari] (B.16)

=∑
i

[wi(µi − µ)2 +wiVari] (B.17)

If the bin width is small enough or the bin content is large enough, we should be

able to model the distribution in side a bin by an uniform distribution. Then µi is

the ith bin center, and Vari is 1
12
⋅ (BinWidthi)2. Let’s look at our assumption in a

simple example, the distribution inside a bin is a linear function, x ∈ [a, b], and
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dN
dx
= f(x) = C1x +C0. The mean in the bin is

µ = ∫ b

a
(C1x +C0)xdx
∫ b

a
(C1x +C0)dx (B.18)

= (C1

3
x3 + C0

2
x2)∣b

a(C1

2
x2 +C0x)∣ba (B.19)

= C1

3
(b3 − a3) + C0

2
(b2 − a2)

C1

2
(b2 − a2) +C0(b − a) (B.20)

= C1

3
(a2 + b2 + ab) + C0

2
(a + b)

C1

2
(a + b) +C0

(B.21)

(B.22)

Now we take a look at the difference between the actual mean and the one from an

uniform distribution, then compare it with the typical size of x, or say, compare it

with b − a to evaluate the relative error of our mean estimation.

∆µ = µ − a + b
2

(B.23)

= C1

3
(a2 + b2 + ab) + C0

2
(a + b)

C1

2
(a + b) +C0

− C1

4
(a2 + 2ab + b2) + C0

2
(a + b)

C1

2
(a + b) +C0

(B.24)

= C1

12
(a + b)2 − C1

3
ab

C1

2
(a + b) +C0

(B.25)

= C1

12
(b − a)2

C1

2
(a + b) +C0

(B.26)

and

∆µ

b − a =
C1

12
(b − a)

C1

2
(a + b) +C0

≪ 1 (B.27)

⇔ (B.28)

C1

12
(b − a)≪ C1

2
(a + b) +C0 (B.29)

⇔ (B.30)

b − a≪ a + b
2
+ C0

C1

(B.31)
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This would be satisfied if the binning is fine enough (∼ small b − a) or we have a

pretty evenly distribution (∼ small C1) or we have large statistics (∼ large C0) or

large x (∼ large (a + b)/2).
One more thing is notable for the estimation of variance. We may apply

Bessel’s correction for an unbiased estimation of the sample’s variance to account

that we don’t have the true mean, or say one less degree of freedom.
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Index
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β-Function, 27

η Acceptance Correction, 115

φ Acceptance Correction, 96√
sNN , 32

v2, see also vn

v3, see also vn

vn, 34

IdA, see also Nuclear Modification Factor

Ncoll, 85

Npart, 85

pT , see also Transverse Momentum

RdA, see also Nuclear Modification

Factor

RI, 159

kT Broadening, see kT Effect

kT Effect, 49

zT , 157

5-7⊗5-7 GeV/c, 158

A

ABS, see also Absolute Subtraction

Absolute Subtraction, 98

ALICE, 51

Alternating Gradient Synchrotron, AGS,

32

Anti-Shadowing Effect, 44

Asymptotic Freedom, 27

ATLAS, 16

B

BBC, Beam-Beam Counter, 62

Bjorken Scaling, 21

Bjorken Scaling Variable x, 21
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32

C

Callan-Gross Relation, 21

Centrality, 65

d+Au Centrality, 85

CMS, 16

Cold Nuclear Matter Effect, CNM effect,

39

Color, 20

Color Glass Condensate, 47

Combinatorial Hough Transform, CHT,

72
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Reconstruction, 102

Correlation Function, 95

Cosmic Microwave Background, 32

Coupling Constant

QCD, 26

Covariant Derivative, Gauge Covariant

Derivative, 24

Cronin Effect, 45

D

DC, Drift Chamber, 70

Deep Inelastic Scattering, DIS, 19

Drell-Yan Process, 41

E

Elementary Particles, 15

Elliptical Flow, 33

EMC Effect, 44

EMCal, EMC, Electromagnetic

Calorimeter, 73

Energy Loss, 37

ERT, 67

European Organization for Nuclear

Research, CERN, 32

Event Trigger, 67

F

Factorization Theorem, 29

Fermi Motion, 45

Fine Structure Constant, α, 20

Form Factor, 21

G

Gauge Boson, 15

Gauge Field, 24

Glauber Model, 65

Gluon Field, 24

Gluon Saturation, 47

H

Heavy Ion Collider, 32

Heavy Ion Collision, 32

Higgs Boson, 15

Higgs Mechanism, 17

HIJING, 192

I

Isospin, 18

J

Jet, 21

Jet Function, 97

Jet Quenching, 37
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Jet Width

Fitting Method, 115

RMS Method, 148

L

Lagrangian Density

Gluon, 25

QCD, 25

Quark, 22

Yukawa Theory, 18

Large Hadron Collider, 33

Lattice QCD, LQCD, 30

Lawrence Berkeley National Laboratory,

LBNL, 32

Leading Order Approximation, LO, 48

Lepton, 15

LHC, see also Large Hadron Collider

Longitudinal Momentum Fraction x, see

also Bjorken Scaling Variable x

M

MB, 67

Mean-Seeds Mean-Partner, 98

MPC, Muon Piston Calorimeter, 76

MSMP, see also Mean-Seeds

Mean-Partner

Muon Piston Calorimeter, MPC, 55

N

Neutrino, 15

Next-to-Leading Order, NLO, 49

Nuclear Modification Factor

IAA, 37

RAA, 37

Nuclear Parton Distribution Function,

nPDF, 41

P

Partner, 91

Parton, 40

Parton Distribution Function, 41

PC, Pad Chamber, 72

Perturbative QCD, pQCD, 29

PHENIX, 61

Photonmultiplier Tube, 62

PMT, see also Photonmultiplier Tube

PYTHIA, 178

Q

QCD Scale, 28

QGP, see also Quark-Gluon Plasma

Quantum Chromodynamics, 17

Quantum Chromodynamics, QCD, 17

Quantum Electrodynamics, QED, 17

Quantum Field Theory, QFT, 17
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Quark, 15

Quark Model, 19

Quark-Gluon Plasma, 30

R

Radiative Energy Loss, 46

Rapidity Acceptance Correction, see also

η Acceptance Correction

Reaction Plane, 34

Relativistic Heavy Ion Collider, 60

RHIC, see also Relativistic Heavy Ion

Collider

RI, see also RI

RICH, Ring Imaging Cherenkov

Detector, 76

RMS, see also Root of Mean Square

Root of Mean Square, 148

Run Number, 102

Runing Coupling, 27

S

Shadowing Effect, 42

Side Band Analysis, 103

Spontaneous Symmetry Breaking, 17

sQGP, see also Strongly Coupled

Quark-Gluon Plasma

Standard Model, 15

Strongly Coupled Quark-Gluon Plasma,
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Super Proton Synchrotron, SPS, 32

Surface Bias, 38

T

Transverse Momentum, 48

Trigger

Trigger Condition, 62

Trigger Particle, 91

Two Particle Correlation, 91

Type A, B, C Systematic Uncertainty,
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Y

Yang-Mills Theory, 22

Z

ZDC, Zero Degree Calorimeter, 64

Zero Yields at Minimum, 98

ZYAM, see also Zero Yields at Minimum
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